
Exploring the fundamental differences between
compiler optimisations for energy and for performance

James Pallister

Supervisors: Kerstin Eder
Simon J. Hollis

A dissertation submitted to the University of Bristol in accordance with the requirements of the degree
Doctor of Philosophy in the Faculty of Engineering, Department of Computer Science.

March 2016

43,000 words.

ii

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

iii

Abstract

The efficiency of an application can have a huge effect on how long a device will run on its
batteries. With no significant increases in battery capacity, yet applications requiring longer
battery life, it falls to software to be more efficient with its use of energy. This is particularly
salient in deeply embedded systems which may have to run on batteries for years.

The high-level nature of writing a computer program detaches the programmer from the
underlying hardware, allowing programmers to quickly write code that will be functional on a
diverse set of devices. However, it also complicates writing efficient software, since the code
may go through many transformations before it is executed, each of which can result in larger
energy consumption without this being easily observable. Therefore, methods of increasing
software energy efficiency are needed.

Compiler optimisations provide an ideal way to achieve this, providing the ability to
automatically transform software into a more efficient form. Typically, compilers have focused
on making an application fast — there exist hundreds of optimisations to decrease runtime, and
often these are effective at reducing energy. However, few optimisations exist to specifically
decrease energy consumption.

This thesis explores the differences between automated ways to reduce energy consumption
and execution time at the compiler level. By exploring an extensive selection of existing
compiler optimisations, through statistical techniques and genetic algorithms, it is discovered
that current optimisations only reduce energy consumption because they reduce the execution
time; while the optimisations affect the power dissipation of the device, this effect is incidental.

The lack of optimisations which affect power dissipation implies a class of compiler op-
timisations has been missed from conventional compilers. This thesis develops two new
optimisations belonging to this class. To create these optimisations, low-level hardware-specific
energy characteristics are identified, focusing on embedded systems. The characteristics are
rigorously modelled, allowing the compiler to make optimisation decisions at a higher level of
abstraction. One of the optimisations manages to save up to 26% of the energy consumption,
achieving this by focusing on average power reduction, rather than execution time reduction.

The combination of the optimisation for energy with the existing optimisations for time is
explored and found not to interact significantly with other optimisations, proving to be linearly
composable. This again suggests that the energy optimisation belongs to a different class of
compiler optimisation.

To achieve further energy efficiency gains, a thorough vertical integration process needs to
be introduced. This requires identifying (possibly) hardware-specific energy characteristics,
modelling them at a level accessible to the compiler, and then making optimisation decisions
based on these models. This level of integration is essential to bridge the levels of abstraction
that exist between the hardware and software, and allows compilers to be successful at reducing
applications’ energy consumption and consequently increasing battery life.

iv

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

v

Acknowledgements

My PhD has been a great experience, allowing me to explore interesting topics and delve deeply into
areas which I would otherwise never get chance to experience. First, I would like to thank my supervisors,
Kerstin Eder and Simon Hollis for their continued direction, support and encouragement with every aspect
of my PhD. I’d like to thank my external examiners, Alan Mycroft and Michael O’Boyle, for the effort they
put into reviewing my thesis, and thoughtful feedback during the viva.

I would like to thank all my friends and family for their support — in particular Steve Kerrison, Jeremy
Morse, Dan Curran, Jake Longo, Craig Blackmore, Kyriakos Georgiou, Tom Deakin and Dejanira Araiza
Illan. In particular I’d like to thank Joanna Hopping, for much emotional support during the course of my
PhD.

During the summers of my PhD I was hosted by Embecosm. I am very grateful to Jeremy Bennett,
Simon Cook and everyone at Embecosm for hosting me and working with me on interesting projects — it
was a pleasure to work with everyone there.

Finally, I am grateful to EPSRC for providing me with funding, without which I would not have been
able to complete this PhD.

vi

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

vii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the requirements of the
University’s Regulations and Code of Practice for Research Degree Programmes and that it has not been
submitted for any other academic award. Except where indicated by specific reference in the text, the work
is the candidate’s own work. Work done in collaboration with, or with the assistance of, others, is indicated
as such. Any views expressed in the dissertation are those of the author.

Signed:

Date:

viii

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

ix

Contents
List of Tables . xi

List of Figures . xi

List of Publications . xiii

1 Introduction . 1
1.1 Context . 2
1.2 Contributions . 3
1.3 Thesis structure . 5

2 The effect of compiler optimisations on energy and time 7
2.1 Research questions . 8

3 Benchmarking . 11
3.1 Background . 12

3.1.1 Metrics . 13
3.2 Measurement . 15
3.3 Platforms . 15
3.4 BEEBS . 15

3.4.1 Benchmarks . 18
3.4.2 Evaluation . 19
3.4.3 Summary . 20

4 Optimisations designed for execution time . 23
4.1 Introduction . 23

4.1.1 Optimisation combinations . 23
4.2 Background . 25

4.2.1 Optimisation selection . 26
4.2.2 Machine learning . 26
4.2.3 Optimisation ordering . 27
4.2.4 Individual optimisations . 28

4.3 Optimisation levels . 29
4.4 Individual optimisation exploration . 31

4.4.1 Fractional factorial design . 32
4.4.2 Individual optimisation analysis . 34
4.4.3 Optimisation combination analysis . 36

4.5 Choosing optimisations using genetic algorithms 39
4.5.1 Genetic algorithms . 39
4.5.2 Fitness functions . 40
4.5.3 Results . 41

4.6 Conclusion . 41

x

5 Optimisations designed for energy consumption . 45
5.1 Introduction . 45
5.2 Background . 46
5.3 Embedded flash memory . 50

5.3.1 Energy model . 54
5.3.2 Optimisation . 60

5.4 RAM Overlay . 66
5.4.1 Implementation . 67
5.4.2 Program energy model . 70
5.4.3 Results . 75

5.5 Conclusion . 78
5.5.1 Code alignment . 78
5.5.2 RAM overlay . 78
5.5.3 Energy effect and research questions . 79

6 Combining optimisations . 81
6.1 Fractional factorial design . 81

6.1.1 Results . 81
6.2 Known good sets . 84
6.3 Genetic algorithms . 85
6.4 Conclusion . 86

7 Conclusion . 89
7.1 Existing compiler optimisations . 89
7.2 Optimisations for energy . 90

7.2.1 Code alignment . 91
7.2.2 RAM overlay . 91

7.3 Combining optimisations for time and optimisations for energy 92
7.4 Future work . 93

7.4.1 Further research questions . 93
7.4.2 Future research direction . 94

Appendices . 97

A Optimisation Reference . 99

B Datasets . 107

Glossary . 109

Bibliography . 111

Index . 119

xi

List of Tables

3.1 The platforms used in this thesis . 16
3.3 Instruction distributions dependency on the platforms and the benchmarks . . . 20

4.1 Fractional factorial designs for the generator I = X1X2X3 34
4.2 The most effective optimisations for each benchmark and platform 36
4.3 The optimisation flag corresponding to each letter in Table 4.2 37
4.4 The least effective optimisations for each benchmark and platform 38
4.5 The optimisation flag corresponding to each letter in Table 4.4 38

5.1 Model parameters for the different SoCs . 57
5.2 Cross validation results for all SoCs . 59
5.3 Validation results using complex loops . 59
5.4 The energy consumption taken by crossing flash boundaries 63
5.5 Available savings from the alignment optimisations 66
5.6 Applicability of the energy optimisations to each SoC 77

6.1 Change when applying the RAM overlay and the genetic optimisations 85

List of Figures

2.1 Two optimisations’ effects on the power trace . 8

3.1 Power measurement setup . 13
3.2 Example of integrating power and time to produce energy consumption 14
3.3 Instruction distributions for different SoCs . 21

4.1 Effect on the source-code of applying different orderings of optimisations 25
4.2 Illustration of each optimisations level . 28
4.3 Average effect of each optimisation level for each benchmark 29
4.4 Average effect of each optimisation level for each platform 30
4.5 Full and fractional factorial designs for three optimisations 32
4.6 The method of calculating the effect due to an optimisation 33

xii

4.7 The blowfish benchmark run on the STM32F0 SoC (Cortex-M0, O1) 34
4.8 The fdct benchmark run on the STM32F1 SoC (Cortex-M3, O2) 35
4.9 Encoding and illustration of the crossover and mutation operators 40
4.10 Results of running the genetic algorithm . 42

5.1 Image of the die of a STM32F103VGT6 . 51
5.2 The internal structure of embedded flash memory 52
5.3 The energy consumption effect of changing the loop offset in flash memory . . . 53
5.4 An example code memory layout and memory access ordering 55
5.5 Example test to exercise different sized loops at different alignments 59
5.6 The basic-block structures and their alignments for the complex loop tests 61
5.7 Comparison between the model predictions and measured results 61
5.8 Alignment example of three basic blocks . 63
5.9 Pareto frontiers of the energy and space trade-off for aligning basic blocks 64
5.10 Algorithm to find the optimal basic block alignment 65
5.11 Power dissipation of STM32F1 with different types of instructions 67
5.12 Proportion of code responsible for the majority of cycles 67
5.13 An example of how the loop inside a function could be moved into RAM 68
5.14 Parameters characterising each basic block . 72
5.15 Results for applying the RAM overlay optimisation to BEEBS. 75
5.16 A plot of the time and energy for all combinations of basic blocks 76

6.1 Comparison of effective optimisations for blowfish (O1), on STM32F1 82
6.2 Comparison of effective optimisations for dijkstra (O1), on STM32F1 82
6.3 Comparison of effective optimisations for 2dfir (O2), on STM32F1 83
6.4 The effect of applying the RAM overlay and the genetic algorithm optimisations 84
6.5 The power and time of many combinations of optimisations 87

7.1 A periodic application before and after the RAM overlay optimisation 92
7.2 Overall lower energy for periodic applications . 93

xiii

List of Publications

James Pallister, Simon J. Hollis and Jeremy Bennett. “Identifying compiler options to minimize
energy consumption for embedded platforms”. In: The Computer Journal 58.1 (Nov. 2013), pp.
95–109.

James Pallister, Kerstin Eder, Simon J. Hollis and Jeremy Bennett. “A high-level model of embed-
ded flash energy consumption”. In: CASES’14 Proceedings of the 2014 international conference on
Compilers, Architecture, and Synthesis for Embedded Systems. New Delhi, India. ACM Press, 2014, p.
74.

James Pallister, Kerstin Eder and Simon J. Hollis. “Optimizing the flash-RAM energy trade-off
in deeply embedded systems”. In: CGO’15 Proceedings of the 2015 international symposium on Code
Generation and Optimization. San Francisco, USA. ACM Press, 2015.

James Pallister, Simon J. Hollis and Jeremy Bennett. “BEEBS: Open Benchmarks for Energy
Measurements on Embedded Platforms”. In: arXiv, CoRR. 2013.

xiv

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Chapter 1.
Introduction

Energy consumption is one of the most critical metrics for embedded systems, given that
battery life has not improved at the same rate as the power requirements for our devices.
Software is in a prime position to reduce this energy consumption by enabling smarter ways to
control the processor and its peripherals. Optimisations to reduce a program’s runtime or energy
consumption are often complex, but can be done automatically by compilers and tools integrated
with the compiler, reducing the effort required from the developer. For example, previous
attempts have used the compiler’s existing optimisations to reduce energy consumption [1], as
well as attempting to create new optimisations which reduce energy by instruction scheduling [2],
instruction selection [3], inserting sleep modes [4] and scratchpad memory utilisation [5]. All of
these optimisations must balance energy consumption and execution time, while keeping the
code size small enough to fit in the system’s memory.

This thesis targets embedded systems, ranging from the deeply embedded processors found
in devices designed to run on batteries for years, to higher-end embedded devices with moderate
processing requirements. Battery life, and thus energy consumption, is particularly important to
these devices. These devices are also heavily constrained by the available memory to store code
and data, since the smallest of the embedded devices tested has just 16kB of flash and 2kB of
RAM. These memories are accessed directly, without caches.

All of the embedded systems have a processor at the heart of the SoC, controlling and
coordinating all of the available functionality (typically deeply embedded systems are not multi-
threaded). The SoCs and their processors have a range of different features, such as differing
memory technologies, pipeline structures and architectures. The large variety of features in these
deeply embedded systems means that code and even optimisations which apply to one system
may be ineffectual on another, and comparing two diverse systems is challenging. To partially
mitigate this problem, this thesis creates a benchmark suite with characteristic applications to
run on all the platforms. The suite is designed to have desirable characteristics for evaluating
compiler optimisations and energy on deeply embedded systems.

The actions of an application can have a large effect on the overall performance and energy
consumption. By optimising the program, a desirable trade-off between the various metrics can
be made. Typically, these metrics include the execution time of a task, its energy consumption
and its code size. Occasionally other metrics are important, such as Worst Case Execution Time
(WCET) [6] and peak power dissipation. The trade-off between these metrics is complex, and
when modifying code to optimise a single metric, all other metrics may change in positive or
negative ways. This is exemplified with energy consumption (E), which is the product of what
exactly the code is doing (power dissipation, P), and how long it takes to do it (execution time,
T),

E = P× T. (1.1)

Therefore, simply making the code faster (decreasing T) does not necessarily lower the energy
consumption, if the speed-up is caused by replacing energy-efficient operations with energy
intensive ones (increasing P).

In general, this implies that optimisations targeting energy consumption need to be more
intelligent than optimisations for performance. Since energy consumption is proportional to
both execution time and power dissipation, an optimisation must be careful to consider the
transformation it makes, as well as how long the resultant code take to execute. This has led to

2 Introduction

many previous optimisations for energy actually delivered by improvements in run time [7]. For
example, scratchpad memories can be used in place of caches, due to their hardware simplicity
and speed compared to direct access to main memory. Much of the benefit in using scratchpad
memories comes from their speed, rather than a significantly lower energy consumption. Similar
effects are seen in many other studies which reduce memory accesses1 [8, 9] or utilise SIMD
instructions [10] — a large proportion of the improvement is from a reduced run-time.

This thesis explores the difference between optimisations for performance and optimisa-
tions for energy consumption, hypothesising that optimisations specifically designed to reduce
energy consumption are significantly more effective at reducing energy than attempting to
utilise existing optimisations. To study this hypothesis, all the existing optimisations imple-
mented in a popular compiler (GCC) are explored, along with combinations of those optimisa-
tions. As expected, many optimisations are found to improve performance (i.e. lower execution
time), and this improvement leads to a reduction in energy consumption. However, this im-
provement is from a reduction in total work, rather than achieving a lower average power during
program execution.

As a new contribution in this area, two new optimisations are proposed, each having differing
trade-offs between energy consumption and execution time. They use features of the SoC not
typically considered for performance optimisation. The optimisations are evaluated in detail and
found to save significant amounts of energy (up to 26%), suggesting that optimisations specifi-
cally targeted towards energy consumption can have a significant impact. These optimisations
specifically for energy consumption are often system-dependent, needing to exploit a facet of
the System on Chip (SoC) that lowers the average power, such as choosing a low power memory
or aligning code in such a way that minimises energy consumption. This results in lower energy
that is due a reduction in power used by the device, rather than decreasing execution time.

1.1. Context

Many previous studies have attempted to explore existing optimisation effects on energy
consumption, and develop completely new optimisations targeting the reduction of energy. This
thesis overlaps the areas of compiler optimisations and energy efficiency, taking ideas from the
construction of energy models and using them to optimise software for embedded systems.
Other ideas are taken from studies exploring the combination and composition of compiler
optimisations, in ordering and selecting transformations.

This contribution fits into a broad spectrum of work considering energy modelling. The
technique examines how each instruction executed in the processor of an embedded system can
be modelled and uses this model to predict the energy consumption of code, without needing
to instrument and measure the code’s energy consumption on a physical platform [11, 12, 13,
14]. Typically, these models are applied to simulation traces, however static analysis [15] can be
used to estimate the energy consumption and the worst case energy consumption [16]. These
models are the foundation for many further studies which attempt to minimise a system’s energy
through modifications to the operating system task scheduling [17, 18], memory prefetching [19]
and routing in wireless sensor networks [20].

While these energy models are useful for estimating the total energy consumption of a
program, they are not always suited for use in optimisation. An instruction-based modelling
approach fundamentally assumes that the choice of instructions can be adjusted to consume
a lower amount of energy. In many processors there are other significant elements that affect

1Memory accesses in general are higher power than an average arithmetic instruction, however this relative difference is often small
compared to how much longer a memory operation can take.

PhD Thesis James Pallister

Contributions 3

energy, such as peripherals, RAM, and flash, as well as the interconnect joining everything
together; these all have larger impacts on the power than selecting different instructions. This
has led to higher-level models being developed to take into account some of these other factors,
such as the memory hierarchy [21], caches [22] and power states of each block in an SoC [23].

Many studies consider energy consumption at the very lowest level — the number of bit-
flips required from each transistor to perform an operation. This has lead to various studies
attempting to minimise the number of bit-flips, by instruction scheduling [2], strength reduc-
tion [24], operand ordering [25] and changing the encoding of the instruction set [26]. The
savings achieved by these studies are often small, and in some cases can negatively impact the
execution time, negating the energy savings.

Although this thesis focuses on how modifications can be made to the software, modifications
to the hardware that are then properly supported by the software can be very effective. Tech-
niques such as pipeline gating to control speculative execution [27], placing cache-lines in a low
energy mode [28], and partitioning the register file into hot and cold (low power) regions [29] all
modify the underlying processor, and require compiler support to achieve their energy efficiency.
Hardware modification can be assisted with software modelling: various tools developed to
explore the energy consumption requirements of a processor before it has been built, such as
Wattch [30] for processor design exploration, and CACTI [31] for caches.

While existing studies have looked at energy modelling and compiler optimisations inde-
pendently there has been little work which combines them, evaluating how effective compiler
optimisations for energy can be, and their relationship to performance optimisations.

1.2. Contributions

This thesis poses several research questions, categorised into how existing compiler optimisations
affect energy and time, the development of new optimisations which specifically target energy
consumption, and the efficacy of energy optimisations when combined with the existing compiler
optimisations targeting runtime or code size. These research questions are listed in Chapter 2,
and the answers to them form the following major contributions of the thesis. First-author
publications supporting the work are also given below.

Development of a benchmark suite to evaluate energy consumption [32]. In Chapter 3, a bench-
mark suite is developed and evaluated for its suitability for testing energy consumption on
embedded platforms. The benchmark suite, BEEBS, is described in a paper and consists of
10 benchmarks from different application categories. The benchmarks are analysed based
on their instruction distribution across several different SoCs, ensuring that a good distri-
bution is realised even when compiled for differing architectures. The work describing the
benchmark suite is also available in,

[32] James Pallister, Simon J. Hollis and Jeremy Bennett. “BEEBS: Open Bench-
marks for Energy Measurements on Embedded Platforms”. In: arXiv, CoRR.
2013.

Analysis of existing compiler optimisations’ effects on energy [33]. Chapter 4 discusses the
existing optimisations in a compiler and their effect on the energy consumption of several
platforms. The analysis uses a technique called fractional factorial design to explore the
large number of combinations and find cases where the energy consumption or execution
time is influenced by the optimisation. In the majority of cases reducing execution time also
reduces energy consumption, however, there are cases where this does not hold true. The
energy consumption patterns are related to the architecture of the processor targeted, and it

James Pallister PhD Thesis

4 Introduction

is found there is no single set of optimisations which is effective for all SoCs or benchmarks.
The work is published in,

[33] James Pallister, Simon J. Hollis and Jeremy Bennett. “Identifying compiler
options to minimize energy consumption for embedded platforms”. In: The
Computer Journal 58.1 (Nov. 2013), pp. 95–109.

Development of new compiler optimisations targeting energy [34, 35]. Two new optimisations
are developed, targeting energy consumption. The first optimisation builds a model of how
energy consumption changes at different code alignments in flash, then uses this model to
optimise the code. The modelling work is published in,

[34] James Pallister, Kerstin Eder, Simon J. Hollis and Jeremy Bennett. “A high-
level model of embedded flash energy consumption”. In: CASES14 Proceedings of
the 2014 international conference on Compilers, Architecture, and Synthesis for Embedded
Systems. New Delhi, India. ACM Press, 2014, p. 74.

The second optimisation exploits a characteristic of some deeply embedded processors,
where executing code from RAM takes less energy than executing code from flash. The
optimisation moves carefully chosen basic blocks into RAM, while considering the neces-
sary trade-offs between code size, execution time and energy consumption. The work is
published in,

[35] James Pallister, Kerstin Eder and Simon J. Hollis. “Optimizing the flash-RAM
energy trade-off in deeply embedded systems”. In: CGO’15 Proceedings of the 2015
international symposium on Code Generation and Optimization. San Francisco, USA.
ACM Press, 2015.

Analysis of combining optimisations for energy with optimisations for performance. The com-
bination of a particular energy optimisation and the existing optimisations is extensively
explored, finding that the optimisation composes linearly in almost all cases, indicating
there are few interactions between the energy optimisation and the existing optimisations
for execution time. The combinations are evaluated using fractional factorial design, as
well as applying it on top of optimisation sets discovered with a genetic algorithm.

In addition to the academic contributions, the benchmark suite, BEEBS, has started to see
industry take-up, being used in system evaluation by Xilinx [36], research projects [37], and other
academic publications [38, 39]. The benchmark suite is also integral to the MAchine Guided
Energy Efficient Compilation (MAGEEC) project, which uses the benchmarks as training data
for a machine learning compiler [40].

To enable the gathering of energy results for this thesis, an accurate measurement system
was implemented. This custom solution utilised an ‘energy-shield’ mounted on-top of a host
processor board. The energy-shield contains shunt resistors and amplification circuitry to
provide the host board with analog signals representing the current and voltage, which can
then be digitised and returned to the computer via USB. The firmware and software for these
boards was developed by the author, and several events held, promoting the use of the board
and educating developers on how to take energy measurements.

Both the measurement board and the benchmark suite have been used in the following
research projects involving the author:

MAchine Guided Energy Efficient Compilation (MAGEEC). The MAGEEC project extends
GCC [41] and LLVM [42] to choose compiler optimisations based on features extracted

PhD Thesis James Pallister

Thesis structure 5

from the application being compiled. Since the efficacy of an optimisation is heavily
dependent on the structure of the code to which it is being applied, whether or not to apply
an optimisation is decided via machine learning. The machine learning made use of BEEBS
as training programs, extracting features and measuring the energy consumption of the
benchmarks.

ENergy TRAnsparency (ENTRA). The ENTRA project seeks to provide the programmer with
advance knowledge of a program’s energy consumption, without the requirement of
running and measuring the program. This is achieved by using a compiler-based static
analysis, combined with energy models [43, 44].

Finally, a compiler optimisation for energy consumption has been implemented by Embecosm
in the GCC compiler, using the work in this thesis (the optimisation and results are covered in
Section 5.3.2).

1.3. Thesis structure

The remainder of this thesis is formed of six chapters. Each chapter is self contained, with the
relevant literature review appearing at the beginning of each chapter, and the rest of each chapter
contains analysis and further develops the topic.

2. The effect of compiler optimisations on energy and time. The relationship between time and
energy is a key topic of the thesis, and introduced in this chapter. The chapter discusses
how an optimisation’s effect on power and time affects the overall energy of a program,
and poses research questions that the remainder of the thesis answers. These questions
lead to the exploration of the difference between optimisations for execution time and
optimisations for energy consumption.

3. Benchmarking. The benchmarking chapter first gives background on how the energy, time
and other metrics are defined when comparing optimisations for energy and optimisations
for time. Then, the set of SoCs/platforms used throughout this thesis is presented and the
justification and creation of a benchmark suite is described. The benchmark suite, BEEBS,
is used throughout this thesis to evaluate execution time and energy consumption for each
of the platforms. The chapter discusses why a new benchmark suite designed to measure
energy is needed and analyses each of the benchmarks.

4. Optimisations designed for execution time. This chapter extensively explores existing opti-
misations designed for computational throughput and their effect on both energy efficiency
and execution time. Initially, the overall optimisation levels available in the compiler are
explored. Then, a large exploration of all individual optimisations and their interactions
is performed, showing the efficacy of each optimisation, and the most effective sets of
optimisations for each combination of benchmark and platform.

An approximation of the best possible energy consumption and execution time is found
using a genetic algorithm and compared to the sets of the best optimisations found.

5. Optimisations designed for energy consumption. This chapter discusses the design, imple-
mentation and evaluation of two novel optimisations for energy. A model of the memory
access pattern’s effect on flash memory consumption is developed for the first optimisation.
A set of three similar optimisations is proposed to exploit this model.

A second optimisation, the RAM overlay optimisation, exploits the different in energy
between RAM and flash by moving code between the two memories. First, a whole

James Pallister PhD Thesis

6 Introduction

program model is developed to approximate the energy cost. Second, the implementation
of the optimisation is discussed. Finally, the optimisation is evaluated on the benchmark
suite (BEEBS).

6. Combining optimisations. This chapter analyses the combination of optimisations for per-
formance and optimisations for energy consumption, building upon the analysis in the
preceding chapters. The RAM overlay optimisation is extensively evaluated in combination
with the optimisations that already exist in the compiler, answering questions about the
composability of energy optimisations with time optimisations and the overall impact on
both the energy and time of an application.

7. Conclusion. This chapter presents the conclusions to the thesis, summarising each chapter
and the answers to the research questions posed in Chapter 2.

Appendices

The appendices contain additional information on the background of the optimisations discussed,
and information about the results obtained.

A. Optimisation reference. This appendix describes many of the optimisations referenced
throughout the thesis, giving working examples of the transformation, as well as the
intended benefit of the optimisation.

B. Datasets. The best sets of optimisations found by the genetic algorithms are listed here for
each benchmark, along with each goal function.

PhD Thesis James Pallister

Chapter 2.
The effect of compiler optimisations on energy and time

Each computation that is run on an embedded System on Chip (SoC) will take a certain
amount of energy and time. When optimising that computation with a compiler, each optimi-
sation will affect both the energy consumption and the execution time. For optimisations that
already exist in modern compilers, the majority target an increase in computational through-
put — either reducing the number of instructions necessary to perform the computation, or
restructuring the code so that it can execute faster. Other optimisations target code size.

These optimisations do not inherently target energy consumption — any change in energy
consumption is purely a side effect, due to energy’s dependence on time. The equation be-
low specifies the fundamental relationship between the energy consumption, average power
dissipation and execution time of an application, a,

Ea = Pa × Ta, (2.1)

where energy (joules) of the program, Ea, is the product of power (watts), Pa, and time (seconds),
Ta. This thesis develops the following formulation of an optimisation’s effect — when an
optimisation is applied to the program, the time, the power and the resultant energy, E′a, are
changed,

T′a = kT · Ta (2.2a)

P′a = kP · Pa (2.2b)

E′a = T′a × P′a = (kT · Ta)× (kP · Pa), (2.2c)

where the scaling factors kP and kT represent how much the optimisation changes power and
time, respectively. Currently, the majority of existing optimisations attempt to minimise kT —
any effect on kP appears to be by chance. An optimisation for energy will attempt to minimise kP,
possibly resulting in a lower energy consumption without an increase or decrease in execution
time. Overall, this means energy consumption is reduced if the inequality holds,

(kT · kP) < 1. (2.3)

The constraint is necessary, since a lower power can be achieved by applying an optimisation
that purely extends the execution time, such as reordering the instructions to cause an increase in
the number of stall cycles. While this does satisfy the objective of lower power, it likely increases
both execution time by a larger amount than it reduces the power dissipation, thus increasing
overall energy.

This thesis hypotheses that the existing optimisations in a production level compiler are
successful at reducing energy consumption by reducing kT , and have a minimal effect on
kP. A further hypothesis is that there is a class of optimisations which enable compilers to
reduce energy by reducing kP.

The majority of current research suggests that compilers are only effective at reducing energy
consumption by also decreasing execution time [7], indeed many studies which advertise a
saving of energy primarily achieve the reduction by decreasing the execution time of the appli-
cation. This contradicts the other often-held belief that compiler-directed dynamic frequency
and voltage scaling can reduce energy consumption by slowing the program’s execution and

8 The effect of compiler optimisations on energy and time

P

T

Multiply

Stall

Add

Average
power

Scheduling
instructions

Strength
reduction

P′

T′

Eliminated stall cycles

kT = 0.8
kP = 1.14

kE = kT · kP = 0.91

P′

T′

Reduced multiplies into additions

kT = 1.0
kP = 0.82

kE = kT · kP = 0.82

Figure 2.1: Power traces as instructions execute, before and after application of two different optimisations.

reducing the voltage [45]. Analysing current and potential future optimisations’ effects on kT
and kP allows these beliefs to be tested and resolved.

Figure 2.1 shows an example of how the kT and kP coefficients change when applying different
optimisations. Each of the three diagrams show a power trace over time, at the instruction level
granularity. The instruction stream consists of high-power multiplies, low-power stalls and
other instructions of average power. The instruction scheduling optimisation (see Appendix A,
page 102) removes stall cycles by reordering instructions, decreasing the overall execution time
— it has a large effect on kT . However, removing the stall cycles also raises the average power,
leading to only a moderate effect on energy. Another optimisation, strength reduction (see
page 106), replaces the high power multiplies with lower power additions, having the effect of
reducing average power, kP, while keeping kT constant. Overall, the strength reduction achieves
a lower energy consumption in this (contrived) case.

2.1. Research questions

The main research questions answered in this thesis are given below. The questions are roughly
categorised by the chapter in which they are answered.

Standard compiler optimisations.
• Do existing compiler optimisations save energy purely by reducing the kT coefficient?

• Are there instances of standard compiler optimisations which affect kP?

PhD Thesis James Pallister

Research questions 9

Compiler optimisations for energy.
• Is there a class of optimisations which can lower the energy consumption by reducing the

kP coefficient?

• Are these optimisations significantly different in terms of structure and application, when
compared to standard optimisations?

• Can these optimisations effectively reduce energy?

Combinations of optimisations for time and optimisations for energy.
• Do optimisations designed to lower kP change the efficacy of optimisations which lower

kT? Are there significant interactions between the two classes of optimisation?

• Are the same optimisations that are effective for a benchmark still effective in the presence
of energy optimisations?

• Are different sets of optimisations found to be effective when including energy optimisa-
tions?

The answers to these questions will allow insight to be gained about the differences between
optimisations for execution time and optimisations for energy consumption, and their compos-
ability. This will enable more effective energy optimisations to be designed to complement the
optimisations already inside compilers.

James Pallister PhD Thesis

10

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Chapter 3.
Benchmarking

Work in this chapter also appears in the following publication:

• James Pallister, Simon J. Hollis and Jeremy Bennett. “BEEBS: Open Benchmarks for
Energy Measurements on Embedded Platforms”. In: arXiv, CoRR. 2013.

Benchmarking is necessary to compare the efficacy of code across different configurations
of the platform or compiler. For this thesis, benchmarking is needed to compare the execution
time and energy consumption before and after applying code transformations to the program.
Additionally, the benchmark suite must be representative of applications which would be run
on the processor, and exercise the important aspects of the platform.

Many benchmark suites exist already, such as MiBench [46], MediaBench [47], LINPACK [48],
Dhrystone [49] and more. These are all targeted towards larger desktop-based applications, with
significant compute power, due to their emphasis on measuring performance, as opposed to
energy efficiency. Most at least assume a host operating system is present, which may not be
the case on an embedded system. Furthermore, when analysing energy consumption, having
to account for the operating systems effect on the result is non-trivial. These benchmarks —
while in theory are portable — have significant difficulties running unmodified on embedded
platforms due to memory and storage constraints. The issue with portability also arises when it
is necessary to contrast multiple platforms.

Prior to this work, a suitable benchmark suite for measuring energy consumption was not
available for embedded platforms. While EEMBC have a recent ULPBench [50] product which
could be ported to some of the platforms used in this thesis, it is not freely available and no
details about the type of workloads in includes are given.MiBench is the closest to an energy-
efficiency benchmark suite in terms of variety of benchmarks and applicability but assumes
there is a host operating system for the majority of the benchmarks. In particular it requires
access to a filesystem, which is usually unavailable on small embedded platforms.

Benchmarking for energy consumption is different to benchmarking for time. When bench-
marking an optimisation for its execution time, a set of benchmarks where the operations (for
example, the instructions) can take different times is necessary, whereas when benchmarking for
energy, each operation should consume a range of energies. For example, accessing the flash
and the RAM in an embedded system often requires the same number of cycles (and therefore
time), however differs in energy consumption. Therefore, a benchmark suite designed to expose
energy consumption artefacts should have benchmarks whose operations access flash and RAM
in different ways, for example.

The actual measurement of energy itself is more challenging than time — all factors that affect
time must be considered, as well as factors which change the power dissipation. Power is affected
by the environment, and particularly by temperature. Also, the power measurement itself can
be inherently imprecise, with noise from power supplies and nearby electronics interfering with
the hardware. Chip-to-chip manufacturing variations can also impact the power dissipation.
These do not generally affect the time measurement — typically the clock generator utilises an
accurate crystal.

These variations may be small individually, but the effect of individual optimisations is also
small; sometimes an optimisation only changes performance or energy by 1–2%. Therefore,
the measurement setup needs to be accurate and multiple runs of the test performed to ensure

12 Benchmarking

correctness.
This chapter discusses benchmarking in general, the measurement of the target metrics (such

as energy and time), the choice of target SoC, and the construction the benchmark suite to be
used for embedded SoCs. The suite forms the basis of the experimental work for the remainder
of this thesis.

3.1. Background

Of the many existing benchmark suites, few target embedded systems, with most targeting
either desktop machines (e.g. Dhrystone [49]) or HPC (e.g. PARSEC [51]). Few also explicitly
target multithreaded systems, and none explicitly aim for energy as the target metric. This
section discusses the relevant existing benchmark suites, which will be drawn upon to create a
suite targeted for evaluating compiler optimisations and energy consumption.

MiBench [46] established a well known set of benchmarks with well characterised behaviour.
This suite consisted of 37 different benchmarks split across six different categories, chosen to be
representative of applications which would be run on both desktop and embedded platforms.
The inclusion of each benchmark is justified, with instruction traces analysed on a model of
the StrongARM architecture. This gave a good representation of the proportions of each type
of instructions that the benchmarks executed. The drawback of the approach was that the
instruction traces were only gathered for one platform — each benchmark could have a radically
different instruction distribution for alternative platforms, possibly leading to some performance
characteristics being overlooked.

MiBench was used as the main benchmark suite for the MILEPOST GCC study [52]. The
study applied machine learning to predict which optimisations would benefit a program without
needing to perform expensive iterative compilation techniques. In this study, they emphasised
how the performance achieved can be very dependent on the structure of the benchmarks. This
highlights the need to have a wide range of benchmarks which each hit different combinations
of the types of computation they perform.

ParMiBench, a variant of MiBench was created to address the lack of multithreadedness in
the original suite [53]. It attempts to parallelise some of the benchmarks, allowing multicore
systems to be benchmarked. This has an advantage over other parallel benchmark suites in
that it also targets the embedded space. Very few other benchmark suites (such as LINPACK,
PARSEC and SPLASH-2 [51]) target multithreadedness at this level — most are aimed at large
clusters and HPC applications.

Weiland et al. [54] develop parallel benchmarks with the aim of running on both embedded
and high-performance systems, with a focus on power consumption. However, the use of embed-
ded in this context is taken to mean mobile-phone-type application processors — significantly
more powerful than the deeply embedded processors targeted in this thesis (with the exception
of the AM335x, an application processor). Their embedded benchmarks utilise network and disk
I/O, as well as caching — none of which are present on the platforms tested in this thesis.

DSPstone [55] is a benchmark suite for Digital Signal Processors (DSPs) and was originally
designed to evaluate compiler effectiveness at compiling for DSPs. This suite contains many
non-integer tests, with most tests replicated in fixed point and floating-point form. DSPstone is
relevant since DSPs are often deeply embedded, however, they typically perform more floating-
point operations than other embedded processors.

A set of benchmarks is maintained by the worst case execution time (WCET) initiative [56].
These benchmarks are appropriate for deeply embedded systems because they are self contained
and written completely in C. Each benchmark is less comprehensive than its equivalent from the

PhD Thesis James Pallister

Background 13

MiBench set, but focuses on one particular application that may be specifically what a low-end
processor will perform. Some of these applications fit well with typical embedded applications.

None of these benchmark suites explicitly cater to energy consumption, however, a suite to
specifically target energy consumption is useful because of the differing energy costs of each
instruction in a processor’s instruction set. Many previous studies [57, 58, 12, 11] have attached
an energy cost to each instruction and find that different instructions can have significantly
different energies even if they take a similar amount of time. This justifies the need for a
benchmark suite which is designed around these criteria, and for the measurement of energy
consumption.

3.1.1. Metrics

Each metric of interest has a different measurement methodology and is useful in different
situations. This section discusses some of the metrics used, and how they can be measured.

The average power and peak power metrics are useful for various platforms which have
limits on the power supply (maximum power draw), or the amount of heat that the processor’s
package can dissipate. In general, power can be measured by instrumenting a processor with
circuitry designed to periodically sample the instantaneous power draw (see Figure 3.1 for more
information). The output of the power measurement circuitry is a sequence of power samples Pi,
where i = 0, 1, 2, ..., n and a time stamp for when each sample was taken, Ti.

Execution time is the typical performance metric, measuring how long a benchmark takes
to complete. This metric is not necessarily meaningful if the application executes continuously,
unless specific tasks should be executed faster so the processor can sleep (for example). The
total execution time for a benchmark can be found from the same measurement hardware, as the
largest (and final) time stamp,

T = max(Ti) = Tn. (3.1)

The energy consumption is an important metric, as it represents the amount of work necessary
to perform the calculation in the benchmark. Lowering the energy consumption will increase
the battery life of the device for a given battery capacity, resulting in devices which need to be
recharged less frequently, use smaller batteries or have batteries replaced less frequently. The
exact energy is given by the integral,

Sh
un

t
re

si
st

or

SoC

D
ec

ou
pl

in
g MeasurementDifferential

amplifier

+

-

Voltage

Current 1. Digitise voltage and current.

2. Multiply together to get power.

3. Time stamp for future calculation.

Figure 3.1: Power measurement setup.

James Pallister PhD Thesis

14 Benchmarking

P2

P3

T2 T3

1
2 (T3 − T2) · (P2 + P3)

T0 Tn

Po
w

er

Time

Approximated power
Actual power (P(t))
Power sample

Figure 3.2: Example of integrating power and time to produce energy consumption.

E =
∫ T

0
P(t) dt, (3.2)

where P(t) is the function of power with respect to time. Since the measurement is discrete, the
energy consumption is estimated from the individual power samples,

E ≈ 1
2

n−1

∑
i=0

(Ti+1 − Ti) · (Pi + Pi+1). (3.3)

The formula uses each pair of points as a trapezium and sums the area of each trapezium. See
Figure 3.2 for an example.

The average power can be found by dividing the total energy consumption by time,

Pavg =
E
T

, (3.4)

where the time, T, is defined in Equation 3.1, and the energy, E, is defined in Equation 3.3. The
average power can also be approximated by simply averaging all power samples if the period
between each power sample is identical.

Other metrics have been proposed as a way to evaluate both energy consumption and time
together, recognising that often it is necessary to achieve low energy consumption and short
execution time together. The most commonly used metric of this type is the energy-delay product
(EDP) [59, 60],

EDP = E · T. (3.5)

The energy-delay product is a metric equally weighting time and energy and is useful in
situations where there is a trade-off between energy and time, such as Dynamic Voltage and
Frequency Scaling (DVFS). In some situations more weight needs to be given to either energy or
execution time. In this case Laros et al. [61] propose weighting the delay factor (T),

E · Tw, (3.6)

where w is the weight of the execution time on the metric. Placing additional weight on the
execution time is useful for applications with stricter deadlines, whereas weighting energy more
heavily should be useful for energy-constrained devices.

PhD Thesis James Pallister

Measurement 15

An estimate of the peak power can be found by taking the largest instantaneous power
recorded, Pi,

Ppeak = max (Pi). (3.7)

The peak power is useful in some circumstances, since it affects the temperature of the device,
and must stay within limits imposed by the power supply.

3.2. Measurement

The metrics of interest were measured using the MAGEEC [40] WAND, a board designed for
taking energy measurements of small embedded platforms. The firmware and host-side software
were designed by the author of this thesis. The board takes measurements of a benchmark
running on the device-under-test and reports the energy consumption, execution time and
average power dissipation back to the host.

As in Figure 3.1, the board takes two measurements, the voltage of the SoC and the voltage
across the shunt resistor, and digitises them. Then, the figures can be integrated into an energy
figure. The device-under-test has one more wire connecting to the measurement board — this
is toggled when the benchmark starts and finishes, allowing the measurement board to record
only during the execution of the benchmark.

Once a measurement has been taken, it is stored on the board until the host requests it. This
allows the host to coordinate the execution of the benchmark on the device-under-test, and the
energy measurement.

3.3. Platforms

Several SoCs are used in this thesis, representing a range of instruction sets, processor
architectures and SoC configurations. Table 3.1 shows details about all of the platforms used.
The majority utilise small, deeply embedded SoCs, with the AM335x (an application processor)
and Epiphany (a DSP coprocessor) being used for more high performance applications.

These platforms are used in a variety of applications, from automotive [62] to satellites [63]
and battery controllers [64]. Some of the simplest processors, such as the PIC32 and the ATMEGA
are used in deeply embedded applications, often running on batteries which must last for
years [65]. Others, such as the AM335x are used in higher performance applications, such as
mobile phones [66]. The simple processors (top seven in the table) are all configured to use
the same clock frequency (8MHz), even though some of them can run faster, to allow easier
comparisons throughout this thesis.

3.4. BEEBS

As part of the contribution of this thesis, a benchmark suite was designed to run on the given
embedded platforms, obeying the constraints imposed by most of the SoCs. This benchmark
suite, BEEBS (Bristol/Embecosm Embedded Benchmark Suite), is designed fit within the memory
constraints of most devices and provide a way of assessing compiler optimisations for deeply
embedded SoCs.

The benchmarks in BEEBS are derived and adapted from a variety of other benchmark suites
— MiBench [46], the Mälardalen WCET benchmarks [56] and DSPstone [55]. Benchmarks from

James Pallister PhD Thesis

16
Benchm

arking

Mnemonic Board Name SoC RAM ROM Clock Compiler Comments
Processor GCC LLVM

STM32F0DISCOVERY STM32F051 [69] SRAM Flash 8MHz X X A simple 3-stage pipeline, using the ARM
Thumb instruction set. No caches.

ST
M

32
F0 Cortex-M0 8kB 64kB

STM32VLDISCOVERY STM32F100 [70] SRAM Flash 8MHz X X A 3-stage pipeline, ARM Thumb/ThumbV2
instruction set, speculative branch execution. No
caches.

ST
M

32
F1 Cortex-M3 8kB 128kB

Breadboard ATMEGA328P [71] SRAM Flash 8MHz X × An 8-bit processor, with separate program and
data memory spaces. No caches.

ATM
EGA AVR8 2kB 32kB

XMEGA-A3BU Xplained ATXMEGA256A3BU [72] SRAM Flash 8MHz X × An 8-bit processor, with separate program and
data memory spaces. No caches.

XM
EGA AVR8 16kB 256kB

Breadboard PIC32MX250F128B[73] SRAM Flash 8MHz X × A standard MIPS32 core. No caches.

PIC
32 MIPS32 32kB 128kB

MSP-EXP430F5229LP MSP430F5529 [74] SRAM Flash 8MHz X × An 16-bit processor, with a RISC-like instruction
set, but more complex addressing modes. No
caches.

M
SP

43
0F MSP430 10kB 128kB

MSP-EXP430FR5739LP MSP430FR5739 [75] SRAM FRAM 8MHz X × Identical to above, however with ferro-electric
RAM instead of flash [76]. No caches.

M
SP

43
0F

R MSP430 1kB 16kB

BeagleBone AM335x [77, 78] DRAM SD-Card 800MHz X X 32kB L1 cache and 512kB L2 cache, ARM mode
instruction set, NEON SIMD unit.

AM
33

5x Cortex-A8 256MB

EMEK4 Dev Board EMEK4 [79] SRAM None 800MHz X × 16 RISC-like cores with floating-point, connected
by three mesh networks. No caches.

Epip
han

y

Epiphany 32kB†

XK-1A XS1-L8-64 [80] SRAM None‡ 400MHz × X Up to eight hardware threads, executed in a
round-robin fashion. No caches.

XM
OS XMOS-XS1 64k

Table 3.1: The platforms used in this thesis.
† Local memory. Also 512MB external DRAM.

‡ Off chip flash is attached as ROM.

PhD
Thesis

Jam
es

Pallister

BEEBS 17

many other suites were also evaluated [47, 67, 48, 68], however, the majority require operating
system support not found on embedded processors. Related individual benchmarks were
combined to represent typical application usage (such as an application both encrypting and
decrypting data) and the benchmarks refactored to remove I/O operations. This is necessary
due to inconsistent methods of I/O on each platform.

The benchmarks were chosen so that they cover a wide variety of different operations that
may affect program execution metrics, such as energy and time. The characteristics evaluated
were:

Integer operation intensity. Integer operations are typically the cheapest operation a processor
can perform, both in terms of energy and time. Integer operations typically only stress the
ALU and the processor pipeline.

Floating-point operation intensity. Floating-point operations are more specialised than inte-
gers, but are still frequently used for certain applications. These operations stress the FPU,
which requires much more silicon area than an integer ALU. Therefore, these operations
can have greater latency and power requirements.

Branch frequency. The amount of branching a benchmark performs will greatly impact the
execution time and energy consumption of a benchmark, due to pipeline flushes, and other
instruction prefetching hardware having an effect. Branch frequency also determines how
much certain components involving large areas of silicon are used, such as caching and
branch predictors.

Memory access frequency. In many deeply embedded systems, a memory access can be per-
formed in a single cycle. However, that memory access typically requires much more
energy than a register access. By contrast in more performant SoCs, the memory access
pattern and bandwidth required exercises the caches and memories, as well as stalling the
processor if the request cannot be fulfilled quickly.

Ensuring that each benchmark covers a different area of this four-dimensional space allows
the suite to expose the energy and performance characteristics of embedded processors.

The benchmarks are also selected to cover several application categories. Six categories are
proposed by MiBench, of which five cover most application areas for embedded programs.
The final category — office applications — are infrequently seen on deeply embedded devices
and the majority of benchmarks in this category were running off-the-shelf programs requiring
Linux.

Automotive. These applications typically control devices and sensors, such as engine control
and sensor data processing. As such, they utilise arithmetic abilities and data manipulation,
and algorithms involving filters, matrices and linear algebra.

Consumer. Consumer applications are typically restricted to more powerful systems, however,
some embedded systems perform various audio and visual decoding and transformations,
such as video playback.

Network. Many embedded processors implement network protocols to handle communication.
Devices such as routers and wireless sensor nodes need to perform various checks on the
data and graph operations on the network structure.

Security. The security category involves the hashing of data, as well as the signing and encryp-
tion of data for cryptographic purposes. These algorithms infrequently use floating-point
numbers, instead requiring high integer performance.

James Pallister PhD Thesis

18 Benchmarking

Telecom. Telecom applications involve radio frequency signals and data analysis. Similarly to
network, the telecoms category includes protocol encoding and decoding.

Since the compilation of the benchmarks and the large range of compiler optimisations will
greatly affect their efficiency, there should also be a range of features in the benchmarks which
affect the compilation process. These include loops, nested loops, different arithmetic types (8-bit,
16-bit and 32-bit integers, float, etc.), calls to functions, string operations, bitwise operations
and array accesses. These features are similar to those suggested in the WCET benchmarks [56],
where they are chosen because worst case execution time tools must be able to cope with these
structures.

A benchmark suite which covers this range of application categories, has a range of bench-
marks with different instruction characteristics, and obeys the constraints of an embedded
system is suitable for evaluating energy efficiency. With the exception of two platforms (of the
list in Table 3.1), the benchmarks will fit in the memory of all platforms, and run on all SoCs.
The two platforms which cannot run some of the benchmarks are ATMEGA and MSP430FR, due
to extremely limited memory.

3.4.1. Benchmarks

This thesis chooses ten benchmarks for the BEEBS benchmark suite, covering a range of the
criteria and application categories.

Name Description

2dfir
Two-dimensional FIR
filter

Finite Impulse Response (FIR) filters are frequently used in image
transformations. In the embedded space, this could be the type
of operations done by digital cameras. This benchmark is similar
to the matrix multiplications but with potentially more memory
accesses and spatially different operand sources for arithmetic.

blowfish
Blowfish encryption

Blowfish is an encryption algorithm commonly used in cryptogra-
phy. This benchmark was taken from MiBench but modified to both
encrypt and decrypt small blocks of data, as if the data was being
streamed into and out of the processor. The stream is generated
pseudo-randomly to avoid platform dependencies on input and
output. Encryption typically involves many integer operations with
fewer, predictable branches.

crc32
32-bit CRC

CRC32 (32-bit cyclic redundancy check) is commonly used for veri-
fication of data streams, notably ethernet frames. It can be imple-
mented with very few instructions as it consists mainly of shifts
and XORs. As it consists of few instructions in a tight loop, this
benchmark should exercise processors with superscalar execution
or branch prediction. The benchmark performs the CRC on a stream
of pseudo-randomly generated data.

cubic
Cubic root solver

This benchmark performs a large amount of trigonometry to solve
various cubic equations. This tests the floating-point pipeline with
very little memory required. This is a portion of the “basicmath”
benchmark in MiBench, cut down to fit on smaller processors (with
limited RAM).

PhD Thesis James Pallister

BEEBS 19

Name Description

dijkstra
Shortest path using
Dijkstra’s algorithm

This benchmark implements the Dijkstra shortest path algorithm,
performing frequent non-linear accesses to memory, and branching
unpredictably. This makes it good for stressing caches and any
branch predictors that the processor may have. The algorithm is
commonly used by routers to calculate the shortest path to another
router. This benchmark was modified from the MiBench version
to have the adjacency matrix embedded in the source code, rather
than loaded from the filesystem.

fdct
Finite Discrete Cosine
Transform

The Finite Discrete Cosine Transform (FDCT) benchmark was in-
cluded as it is a core algorithm behind many video decoders used
in consumer products. This benchmark represents real-world usage
of the systems as well as testing the floating-point pipeline and
caches.

matmult-int
Integer matrix multiply

Integer matrix multiplication is used very frequently in many appli-
cations, and so is a useful benchmark to have. It consists of a tight
inner loop with many array accesses, making it useful for stressing
the memory and integer pipeline at the same time. This should also
expose data caching effects of the platform.

matmult-float
Floating-point matrix
multiply

Floating-point matrix multiplication is also used frequently in many
applications. This benchmark is a modified version of the integer
matrix multiplication benchmark, with floating-point numbers in
place of integer — all other code is identical. This should allow
a good metric of relative performance between the integer and
floating-point pipeline to be produced.

rijndael
AES encryption

Rijndael is the algorithm for the Advanced Encryption Standard
(AES). It is commonly used in many security applications, and
has a similar structure to blowfish. It also has similar execution
characteristics except for more frequent branching.

sha
Secure Hashing
Algorithm

Secure Hashing Algorithm (SHA) is commonly used for fingerprint-
ing and verification of data streams. It is useful for stressing integer
pipelines, and has low memory requirements. The benchmark
hashes a stream of pseudo randomly generated data.

3.4.2. Evaluation

This section provides a concrete analysis of all the chosen benchmarks by collecting their
instruction traces across a subset of the available platforms, with the aim of verifying a good dis-
tribution of instruction types was achieved for different SoCs. The STM32F0, XMOS, Epiphany,
and ATMEGA SoCs were chosen due to their differing characteristics, including different mem-
ory sizes, pipeline depths, instruction set features (conditional execution, floating-point, etc.) and
data-path bit-widths. The instructions can be categorised to demonstrate that each benchmark
performed a different distribution of operations. Figure 3.3 shows the instruction distribution for
the STM32F0 (ARM Cortex-M0, Thumb instruction set), XMOS, Epiphany, and ATMEGA (AVR)
platforms. The ‘Other’ category of instructions contains miscellaneous control instructions that
do not fit into other categories (for example, interrupt control on the Epiphany platform). It

James Pallister PhD Thesis

20 Benchmarking

Type Benchmark distribution ranges (%)
Epiphany XMOS STM32F0 ATMEGA

Integer 26–77 28–68 37–79 60–82
Floating-point 0–49 – – –

Memory 10–30 17–43 6–34 3–30
Branching 1–20 1–30 1–42 10–26

Table 3.3: Instruction distributions dependency on the platforms and the benchmarks.

was not possible to adapt three benchmarks for the ATMEGA SoC — blowfish, matmult-int and
rijndael. These benchmarks required more than the 2kB of available memory and could not be
run on the device.

The integer instruction category is the largest group in almost every case, for all platforms
and benchmarks, and the distributions are similar, with small variations due to the underlying
instruction set. This comes from the integer category covering the largest number of types of
instructions, as it groups arithmetic, register copying and bit-wise operations. For example,
there is a larger percentage of mov-type instructions in the Epiphany results because there are
several predicated mov instructions (moveq, movlt, etc). This reduces the need for conditional
branches, so this category decreases in proportion. The ATMEGA executes integer operations
much more frequently than any other type — many benchmarks utilise 16- or 32-bit arithmetic,
which must be emulated by the 8-bit processor.

Epiphany is the only platform in the subset chosen which has hardware support for floating-
point. For the other platforms, software library calls are inserted in place of the operations by
the compiler. On the XMOS platform this manifests in an increased proportion of branch and
memory instructions, whereas for the STM32F0 platform the proportion of integer operations
rises. These differences are due to the different emulation strategies used. The STM32F0 traces
follow the same general trend as the traces for XMOS and Epiphany, however with overall
fewer memory operations, since the Cortex-M0 processor has support for the ldm and stm

instruction allowing multiple accesses to memory in a single instruction. These instructions are
used extensively in function prologues and epilogues to save and restore registers. Floating-
point instructions appear in the traces for benchmarks which do not use floating-point types in
the Epiphany processor — the floating-point pipeline can be reconfigured to perform integer
operations instead.

3.4.3. Summary

These benchmarks show a range of different quantities of each instruction class, with similari-
ties across platforms. This makes the set of benchmarks ideal for use in energy profiling a system.
For all platforms a given benchmark produces a similar instruction profile. This is shown in
Table 3.3. The columns in the table show the overall range of instructions for the benchmark
suite. These ranges are similar for all the platforms, with the most significant difference being
the ATMEGA, with at least 60% of its instructions being integer. This due to the 8-bit nature of
the processor requiring it to perform multiple instructions to emulate longer bit widths. Between
benchmarks there is significant variation in instruction distributions, therefore the suite explores
a wide range of input configurations in a consistent manner between architectures.

Overall the benchmark suite covers a wide range of applications in several real-world appli-
cation categories. The instruction distribution differs between each benchmark and provides
a good coverage of each instruction type, even across different SoCs. Along with a range of
features which affect the compilation of the benchmarks, this makes the suite ideal for both

PhD Thesis James Pallister

BEEBS 21

Integer Floating point Memory Branching Other

2d
fir

blow
fish

crc
32

cu
bic

dijk
str

a
fdct

matm
ult-

floa
t

matm
ult-

int

rij
ndae

l
sh

a
0

20

40

60

80

100

%
in

st
ru

ct
io

n
s

STM32F0

2d
fir

blow
fish

crc
32

cu
bic

dijk
str

a
fdct

matm
ult-

floa
t

matm
ult-

int

rij
ndae

l
sh

a
0

20

40

60

80

100

%
in

st
ru

ct
io

n
s

XMOS

2d
fir

blow
fish

crc
32

cu
bic

dijk
str

a
fdct

matm
ult-

floa
t

matm
ult-

int

rij
ndae

l
sh

a
0

20

40

60

80

100

%
in

st
ru

ct
io

n
s

Epiphany

2d
fir

blow
fish

crc
32

cu
bic

dijk
str

a
fdct

matm
ult-

floa
t

matm
ult-

int

rij
ndae

l
sh

a
0

20

40

60

80

100

%
in

st
ru

ct
io

n
s

N
o

d
at

a

N
o

d
at

a

N
o

d
at

a

ATMEGA

Figure 3.3: Instruction distributions for different SoCs.

James Pallister PhD Thesis

22 Benchmarking

examining compiler optimisations and evaluating energy consumption for embedded platforms.
BEEBS is therefore used as the standard benchmark suite during this thesis.

PhD Thesis James Pallister

Chapter 4.
Optimisations designed for execution time

Work in this chapter also appears in the following publication:

• James Pallister, Simon J. Hollis and Jeremy Bennett. “Identifying compiler options to
minimize energy consumption for embedded platforms”. In: The Computer Journal 58.1
(Nov. 2013), pp. 95–109.

This chapter explores the existing optimisation in the compiler (GCC), and their effect on
both energy and time.

4.1. Introduction

There are many compiler optimisations in existence, ranging from optimisations which
attempt to remove unneeded computation by refactoring the code, to optimisations which
attempt to reorder instructions using a model of the processor’s pipeline. Each optimisation has
its own criteria for application, and effect upon the source code. In general, the most effective
sequence of optimisations to apply is not obvious, therefore current compilers typically have
predefined sequences of optimisations, grouped into an optimisation level. These are combinations
of optimisations in a specific order, which have been determined by the compiler writer as an
acceptable trade-off between compilation time and performance of the compiled code. As such,
this predefined combination almost never reaches optimal performance.

Most of the optimisations existing in current compilers are designed for performance: in-
struction latencies are used to schedule, register allocation attempts to reduce the number of
spill instructions and instruction selection prioritises the shortest execution time. The effect
on a program’s execution time can be large — achieving a 50% reduction in execution time by
enabling optimisation is not uncommon for many applications. The lower execution time also
helps embedded systems with their goal of lower energy, since frequently these optimisations
reduce the total amount of work to be performed (i.e. a lower kT constant, as discussed in
Chapter 2). Therefore, it is useful to explore the effects of the existing optimisations on the
energy consumption before creating new optimisations specifically targeted at energy.

This chapter explores how existing optimisations in the compiler (GCC [41]) affect energy
consumption, and how the selection of these optimisations affects the energy consumption.
First, background on combining optimisations and optimisation selection is presented. Then, an
analysis of the main optimisation groups in the compiler is given. The optimisations inside each
group are then explored for their individual effect and efficacy across the BEEBS benchmarks
and the platforms. Finally, a genetic algorithm is used to attempt to select an effective set of
optimisations, and find cases where energy can be saved at the expense of execution time.

4.1.1. Optimisation combinations

The exact selection or sequence of optimisations applied to a program can have a huge
effect on the final performance of the program, sometimes with orders of magnitude difference.
However, the optimal choice of optimisations is difficult to determine, due to the large num-
ber of interactions between optimisations. The effect of ordering different optimisations and

24 Optimisations designed for execution time

interactions between optimisations is demonstrated with the example in Figure 4.1. This exam-
ple considers the interaction between common subexpression elimination (CSE1, see Appendix A,
page 99 for more details) and function inlining (see page 101). With just these two optimisations,
the following four cases are discussed:

CSE only. If only CSE is performed, the call to the optimiser discovers multiple calls to function1

with identical arguments and saves the result in a temporary, eliminating one of the
calls2 (Figure 4.1). The temporary is used for the final multiplication, resulting in a smaller
code size and faster execution — less work needs to be repeated.

Inlining only. If this code snippet is compiled with function inlining, then function1 can be
identified as a small, inlinable function, and will be substituted into function2, eliminating
the function call overhead.

CSE then inlining. With CSE performed first, the function inlining affects the temporary, result-
ing in two multiplies and two additions.

Inlining then CSE. When CSE is applied after inlining, the optimiser will discover that the
expression (b + 1) appears multiple times, and assign it to a temporary variable. It then
replaces the expressions with this temporary variable, resulting in the code in the bottom-
right of Figure 4.1. This expression minimises the number of additions that need to be
performed (three multiplications, one addition), usually resulting in smaller and faster
code — the total work that must be performed is lower.

In each case the resulting code is different and will have differing performance and energy
consumption characteristics. Note that for both cases with CSE and inlining performed, CSE can
be applied again and will further reduce the amount of code, giving:

int function2(int b)

{

int t1 = b + 1;

int t2 = t1 * t1

return t2 * t2;

}

Apart from temporary names, both CSE–inlining–CSE and inlining–CSE–CSE result in the
same final program, although this is not necessarily the case for other programs or optimisations.
Neither CSE nor inlining can be applied further to the program. In a typical compiler, CSE will
be applied repeatedly until there are no more expressions to be eliminated.

The applicability of an optimisation to the source code is determined by the structure of
the source code itself. In general, an optimisation will search for a particular pattern in the
Abstract Syntax Tree (AST) or Intermediary Representation (IR) and, when found, perform a
transformation. This modifies the AST or IR each time an optimisation is applied, resulting in
a different set of optimisations which can be applied subsequently. This causes complexity in
choosing sequences of optimisations — the applicability of a sequence depends on the exact
structure of the input program. Considering the sequencing of optimisations allows modern
compilers to be split into two categories:

• Compilers which apply their optimisations in a fixed order, and individual optimisations
are just enabled or disabled in this sequence.

1In this example, CSE is not applied until there are no common subexpressions remaining, so may be termed partial common
subexpression elimination.

2The optimisation can be applied because function1 has no side effects.

PhD Thesis James Pallister

Background 25

No transformations

int function1(int a)

{

return a * a;

}

int function2(int b)

{

return function1(b + 1)

* function1(b + 1);

}

CSE

int function1(int a)

{

return a * a;

}

int function2(int b)

{

int t1 = function1(b + 1);

return t1 * t1;

}

Inlining

int function2(int b)

{

return ((b + 1) * (b + 1))

* ((b + 1) * (b + 1));

}

CSE, then inlining

int function2(int b)

{

int t1 = (b + 1) * (b + 1);

return t1 * t1;

}

Inlining, then CSE

int function2(int b)

{

int t1 = b + 1;

return (t1 * t1) * (t1 * t1);

}

Figure 4.1: Source code representation of the effect of applying different orderings of optimisations.

• Compilers which allow optimisations to be applied an arbitrary order.

GCC 4.8 [41] is an example of the first type — many optimisations exist but their order is
fixed and cannot be changed without modifying the compiler. On the other hand, LLVM 3.5 [42]
allows most optimisations to be applied in any order — possibly specified by the developer.
By allowing complete freedom in specifying the order of the transformations the compiler can
potentially create faster code, however, the ordering of the compiler optimisations is a difficult
problem, the “phase ordering problem” [81].

4.2. Background

Many studies have considered how to select and order optimisations to increase performance
or decrease energy consumption. These techniques range from iterative compilation to genetic
algorithms and machine learning to choose optimisations. Further studies have analysed the
effect of individual optimisations on energy consumption. These are now explored in detail.

James Pallister PhD Thesis

26 Optimisations designed for execution time

4.2.1. Optimisation selection

Pan et al. [82] explore several approaches to optimisation selection (for performance), and
propose a new method based on several state-of-the-art techniques. Batch Elimination executes
the application several times each with one optimisation disabled, then assumes the best set is
the set with all performance-reducing optimisations disabled. However, this approach does not
always perform well, since it does not consider the interactions between optimisations. Another
algorithm, Iterative Elimination, tries to iteratively find optimisations to eliminate by testing
optimisations individually and turning off the one with the largest negative impact. The process
is repeated until no optimisations with negative impacts are left — this algorithm is very similar
to a restricted form of hill climbing [83].

Pan et al. combine the two algorithms, attempting to iteratively eliminate multiple optimisa-
tions and achieving a lower number of tests required than iterative elimination, while obtaining
a similar performance. However, since these algorithms are fairly restrictive in terms of the set
of optimisations they consider, performance increases of only 5–10% were seen.

Several studies explore the optimisation space in a more systematic way, allowing general
conclusions about the nature of the space to be made. Iterative compilation has been used
to explore the loop tile size and unroll factor parameters in the compiler in [9]. The effect on
performance, energy and the energy delay product is shown to have a recurring pattern in the
2D space of tile size and unroll factor. They conclude that iterative compilation is a promising
approach that may reduce energy when used on a larger number of loop transformations and
combinations of optimisations. The majority of improvement in energy consumption in this case
comes from the increase in performance, and requires a large number of compilations and tests
to find a good set of parameters.

Chow et al. [84] take the approach of using fractional factorial design [85], choosing a subset
of tests to explore the effect of nine optimisations on an application’s performance. Generally,
fractional factorial design is an experimental-design methodology which allows a large number
of possibly interacting factors to be explored systematically (see Section 4.4.1) [85]. Fractional
factorial design reduced the number of runs to 32, instead of 29 = 512, allowing the simulations of
the different configurations to be completed in an acceptable time. Using the results derived from
the fractional factorial design runs, a better set of optimisations was able to be chosen. The set
improved the performance over naı̈vely selecting every optimisation, by choosing optimisations
which had a significant effect, and considering the interactions between optimisations. A further
conclusion of this study was that examining optimisations individually is a poor metric of how
an optimisation would perform when combined with other optimisations.

Fractional factorial design was also applied iteratively to select the most effective optimisation
at reducing energy [1]. A statistical test was used to choose the optimisation that reduced
the energy consumption of the benchmark the most, while using fractional factorial design
minimised the number of runs that needed to be performed. Using this technique they managed
to reduce the energy consumption by up to 15% more than the highest optimisation level. This
study used a larger range of optimisations3 than most other studies, exploring 31 different
optimisations. However, the study was only performed on a single platform.

4.2.2. Machine learning

The majority of studies conclude that the optimisation selection space is very difficult to
explore in a way that allows a good set of optimisations to be chosen. Several papers have
tackled this by using machine learning to generate a set of optimisations. Genetic algorithms

3However, the number of optimisations was still fewer than half the number available in the compiler.

PhD Thesis James Pallister

Background 27

have been used to choose which optimisations should be selected, by Lin et al. [86]. The study
compared a basic genetic algorithm to a modification which attached weights to each of the genes
(optimisations) within each individual. The weights were used to find groups of optimisations
that are positively correlated and ensure they are all enabled or disabled for a particular number
of generations. This modification allowed the genetic algorithm to find a better solution, and
converge upon that solution faster, achieving up to 24% over the fastest optimisation level.

Cooper et al. [87] attempt to use genetic algorithms to reduce the code size of an application,
by selecting and ordering compiler optimisations. The genetic algorithm managed to find
benchmark-specific optimisation sequences which significantly reduced the code size, as well
as finding a single optimisation sequence which performed within 6% of the best individual
sequence (for code size). The optimisation sequences found sometimes made the program
execute faster, suggesting that the optimisation sequence was managing to simplify the code
sequence. In other cases the execution time was not affected (unreachable code elimination type
optimisations) or was slower, ensuring optimisations which made the code faster but larger were
not used (such as function inlining, or techniques outlined in [88]). Another study attempted
to use genetic algorithms to select loop transformations, allowing a loop to be vectorised, and
increase the performance [89].

Few studies attempt to minimise energy consumption using compiler optimisations with
a genetic algorithm [90]. However, Schulte et al. [91] applied a genetic algorithm to the code
generated by the compiler, attempting to minimise the energy consumption (using an energy
model). The technique allowed the energy to be reduced significantly, although the amount
of functionality retained by the program was not guaranteed or verified. In the extreme case,
this could result in the algorithm removing all of the functionality and reducing the energy
consumption to zero, however this was avoided by adding functionality to the fitness function.

MILEPOST [52] used machine learning to select a set of optimisations to apply to each
benchmark in a suite based on static features of that benchmark. This involved a training phase,
where sets of optimisations were applied to benchmarks and stored in a database so that the
compiler could later make predictions when given a new benchmark. This allowed the compiler
to achieve both code size and performance improvements without having to compile and test
the benchmark iteratively.

Similarly to the MILEPOST GCC study, Cavazos et al. [92] used features of each benchmark
to predict which optimisations would be beneficial. However, dynamic features were used in
addition to statically analysing the benchmark, providing the compiler with runtime feedback
on how effective the optimisations were and what the application was doing. To gather this data,
hardware counters were used. They were able to achieve a 17% improvement in performance
with only 2 additional runs for a particular benchmark. The use of the counters was compared
to a pure random selection of optimisations. Due to the irregular nature of the optimisation-
selection space (many minima close to the global minima), random selection performs well,
but the prediction method achieves the same level of performance in 60 iterations of tests and
refinement, compared to 200 (for random selection).

4.2.3. Optimisation ordering

Careful optimisation selection has been shown to both increase performance and decrease en-
ergy consumption over blindly applying every optimisation available. However, by considering
the ordering of optimisations much greater gains can be gained. No known studies have focused
on the effect of optimisation ordering on energy usage, however this area has been explored for
performance. A review of heuristics used to explore this larger space has been undertaken by
Kulkarni et al. [81]. This study looked at hill climbing, simulated annealing, genetic algorithms,
random search and N-lookahead. A major finding is that the search space is highly irregular,

James Pallister PhD Thesis

28 Optimisations designed for execution time

O0

Og

O1

O2Os

Oz
O3

Code size

Expected performance

C
om

pi
la

ti
on

ti
m

e

GCC

LLVM

Figure 4.2: Illustration of the design goals of each optimisation level. The optimisation levels trade-off between
compilation time, expected performance and code size (size of the circle).

with a few global minima, and that increasing the length of the optimisation sequence increases
the number of global minima in the space.

As with optimisation selection, machine learning has also been used in the ordering of
optimisations [93] based on features from the application being compiled. This approach used
Neuro-Evolution for Augmenting Topologies (NEAT) [94] to learn the structure of an artificial
neural network that would recognise a program’s features and identify the next optimisation
pass that should be run. A speed up of up to 20% over the best optimisation level was achieved.

4.2.4. Individual optimisations

Individual optimisations have also been extensively analysed for their effect on energy
consumption. In addition to the loop optimisations (tiling, unrolling, see Appendix A) studied
with iterative compilation by Gheorghita et al. [9] (described earlier), the energy impact of loop
fusion was explored in [95]. The study used Dynamic Voltage and Frequency Scaling (DVFS) to
reduce the energy consumption of an application. Loop fusion was then also applied and shown
to reduce the performance impact of DVFS, while increasing the energy savings of the technique.

Single Instruction Multiple Data (SIMD) usage has been analysed with regards to power
dissipation and energy consumption [10]. Overall, using SIMD instructions to parallelise code
reduces energy consumption while increasing power dissipation, due to larger amounts of silicon
area being active simultaneously. The majority of the energy reduction comes from the reduced
runtime, as well as lower instruction overhead (fewer total instructions). This study also looked
at some individual optimisations, finding that most optimisations either reduced or increased
energy and time proportionally (i.e. the average power was unchanged). A few optimisations
did affect average power dissipation: function inlining was found to reduce the power. Inlining
can remove memory references which typically have a higher than average power dissipation.
Loop unswitching — creating an extra loop by moving a conditional expression out of the loop
body (see page 104) — was found to increase the average power, although no explanation was
given.

A common technique to avoid the overhead of caches is to use a scratchpad memory. Scratch-

PhD Thesis James Pallister

Optimisation levels 29

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
2dfir

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
blowfish

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
crc32

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
cubic

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
dijkstra

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
fdct

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
matmult-float

O0 O1 O2 O3 Os

Optimisation level

0.4

0.5

0.6

0.7

0.8

0.9

1.0
matmult-int

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
rijndael

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sha

F
ac

to
r

ch
an

ge
in

ti
m

e
an

d
en

er
gy

Figure 4.3: Average effect of each optimisation level for each benchmark.
Execution time

Energy consumption

pad memories are areas of fast RAM — often directly on chip — which are managed by the
application, rather than by integrated hardware controls. While the memories are fast and
simple, the complexity of utilising the scratchpad is shifted to the application or compiler. Since
scratchpad memories are simple they consume less energy than caches. Several studies have
examined how code or data can be moved into these memories to speed up memory access [96].
These studies also look at the energy consumption of the techniques, finding that up to 30% of
the energy could be saved, with a performance increase of 25%. Ishitobi et al. [97] examine the
case where both caches and scratchpad memories can be used, finding that 23% reduction in
energy consumption can be achieved with no loss of performance.

Ortiz et al. [98] investigated the effect of several source code optimisations on power dissi-
pation. The study used Analysis of Variance (ANOVA) to determine which optimisations had
a significant impact on the power dissipation on three processors, finding that loop unrolling
had an impact on two of the platforms, and the variable’s data-type had an effect on one of the
platforms (although the paper lacks information on exactly what this optimisation did). This
study looked purely at power dissipation, ignoring the effect of the optimisation on execution
time and energy consumption, making it difficult to draw conclusions about the efficacy of each
optimisation.

Most of the studies described here achieve their energy savings in majority from perfor-
mance improvement. Savings in energy are also increased by reductions in memory operations,
although the additional benefit is low compared to the speed up.

4.3. Optimisation levels

Modern compilers have many optimisation passes — far too many to be individually con-
trolled by the user. Therefore, compilers expose several combinations of optimisations, providing
different trade-offs between performance, compilation time and code size. These optimisation
levels are chosen based on the compiler writer’s experience, both the selection and ordering.
Some of the common optimisation levels are given below, and shown in Figure 4.2.

James Pallister PhD Thesis

30 Optimisations designed for execution time

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ac

to
r

ch
an

ge
in

ti
m

e
an

d
en

er
gy

STM32F0

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
STM32F1

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AM355x

O0 O1 O2 O3 Os

0.4

0.5

0.6

0.7

0.8

0.9

1.0
XMOS

O0 O1 O2 O3 Os

Optimisation level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ac

to
r

ch
an

ge
in

ti
m

e
an

d
en

er
gy

Epiphany

O0 O1 O2 O3 Os

Optimisation level

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ATMEGA

O0 O1 O2 O3 Os

Optimisation level

0.4

0.5

0.6

0.7

0.8

0.9

1.0
XMEGA

Figure 4.4: Average effect of each optimisation level for each platform over all bench-
marks.

Execution time

Energy consumption

O0 Do not apply any optimisations. This usually results in the least efficient code, however the
compilation time is small. Additionally, the generated code maintains almost a one-to-one
mapping with the source code, making it easy to debug.

Og Newer versions of GCC (above 4.9) have this grouping of flags which attempts to retain
good debug information about the code — which is often destroyed when applying some
optimisations — while still optimising the code

O1 Apply a small set of basic optimisations. Optimisations which almost always have a
positive effect on execution time and code size are applied here.

O2 Apply a larger set of optimisations, including more complex optimisations such as in-
struction scheduling. While some of these optimisations reduce code size, others such as
alignment of functions and labels will increase it.

Os Attempt to compile for code size. The set of optimisations used is very similar to O2, but
with optimisations which increase code size disabled.

Oz Optimise for code size even more by doing optimisations which will likely reduce the
performance of the program. This optimisation level is available in newer versions of
LLVM.

O3 Use sophisticated optimisations which take significant amounts of time to perform and
may not necessarily improve performance. Optimisations such as unrolling and function
inlining are enabled by GCC at this level.

Figure 4.3 shows the energy consumption and execution time effect of each optimisation
level for each benchmark, averaged across platforms (for GCC). The overall trend is as expected

PhD Thesis James Pallister

Individual optimisation exploration 31

— increasing the optimisation level decreases both energy and time. However, the size of the
reduction and efficacy of each optimisation level varies by benchmark. Some benchmarks, such
as cubic do not see a large effect from applying optimisations. The lack of effective optimisation
is limited by the structure of the code in cubic, as a result of many library calls which are resolved
at link-time and not optimised.

On the other hand, the sha benchmark can be heavily optimised across all platforms. There
are few library calls in this benchmark, and many structures in the code that the optimiser
manages to exploit.

One benchmark, 2dfir, sees the energy consumption decrease by more than the execution
time. This is heavily skewed by the AM335x for this benchmark. The optimisations applied at
O3 for this benchmark applies a transformation which greatly reduces the amount of memory
traffic and vectorises the code. Fewer costly off-chip accesses are necessary, reducing the overall
energy.

The majority of benchmarks exhibit slightly different behaviour on different platforms due to
the different instruction sets. The 2dfir benchmark does not get significantly optimised until link-
time optimisation is enabled in the STM32F0 and STM32F1, however the benchmark is effectively
optimised at O1 and O2 for Epiphany and AM335x respectively. The average optimisation level
effect for each SoC is seen in Figure 4.4. The general trend shows a processor with a complex
pipeline benefits from higher optimisation levels, e.g. scheduling only has an effect when the
pipeline is non-trivial. The STM32F0 (Cortex-M0), and XMOS processors both have simple and
predictable pipelines, resulting in the higher optimisation levels having less effect, and thus
less scope overall for optimisation. The Epiphany and AM335x (Cortex-A8) both have in-order
superscalar processors and in general the optimisations have a larger effect.

The AM335x has the most complex pipeline, and for this platform larger deviations between
energy consumption and execution time are seen. For many of the benchmarks (blowfish,
dijkstra, fdct, matmult-int, rijndael) execution time decreases by a larger proportion than energy
consumption. Instruction scheduling and other optimisations which allow both pipelines of the
processor to be utilised simultaneously enable this difference. The execution time is lowered
since multiple instructions happen at once, but the energy is not lowered by as much, since a
larger amount of the processor is active simultaneously, triggering higher power dissipation.

The STM32F1 sees a small divergence in energy consumption and execution time for some
benchmarks (Figure 4.4). This is largely caused by scheduling eliminating pipeline stalls, and
load/store pipelining inside the Cortex-M3. This feature allows consecutive loads and stores to
be pipelined, with each subsequent operation taking only one additional cycle instead of two.
While this reduces the instruction latency, the same amount of work must still be performed by
the processor, so the energy consumption is not reduced by as much as the time.

Overall, all of the benchmarks have different responses to the optimisation levels and in some
cases energy diverges from execution time, although not by more than 10%. This suggests that
the optimisation efficacy is dependent on the structure of the source code. Each of the platforms
also has a different response to changing optimisation levels, with more complex processors
having a much larger scope for effective optimisation. For most of the SoCs the energy reduction
is proportional to the reduction in execution time — the bulk of the energy improvement is from
faster execution.

4.4. Individual optimisation exploration

This section discusses how the selection of optimisations can be analysed. Compilers, such as
GCC, apply their optimisations in a fixed order, however optimisations can be turned on and off

James Pallister PhD Thesis

32 Optimisations designed for execution time

000 001

011010

100 101

111110

X1

X2

X3

(a) Full factorial design of three optimisations, X1,
X2 and X3.

000 001

011010

100 101

111110

X1

X2

X3

(b) Fractional factorial design of the three optimisa-
tions.

Figure 4.5: Full and fractional factorial designs for three optimisations.

individually. All of the optimisations available in GCC are analysed using fractional factorial
design across five of the platforms, STM32F0, STM32F1, AM335x, Epiphany, and XMEGA.

4.4.1. Fractional factorial design

Fractional factorial design (FFD) is an experimental-design technique used to systematically
explore a large combinatoric search space. Using this method, a reduced set of tests can be
created to explore the efficacy of a set of optimisations, and is necessary to avoid the prohibitively
large number of tests if the space was explored exhaustively. FFD allows a previously intractable
number of optimisations to be explored at the same time, and their interactions accounted for.

An example of a full factorial design (exhaustive) in shown in Figure 4.5a. This is simply
every combination of the optimisations X1, X2 and X3, resulting in 8 tests. The number of tests
scales exponentially in a full factorial design:

T = 2N , (4.1)

where N is the number of optimisations and T is the number of tests that need to be run. The
effect a single optimisation has on the performance or energy can be estimated by taking the
difference between the average performance when the optimisation is on, and the average
performance when the optimisation is off.

Ko = ∑ Son(o)
|Son(o)| −

∑ Soff (o)
|Soff (o)| . (4.2)

In the above equation, Son and Soff return the set of optimisations which are enabled and disabled
respectively. The parameter, o, indicates a specific optimisation and Ko gives the main effect of
this optimisation. This equation is illustrated in Figure 4.6. A similar technique can be used to
estimate the effect of second and higher-order interactions. In the above equation, o is replaced
by a set of optimisations.

A full factorial experiment design, however, captures many interactions which may not
be relevant — higher-order interactions are statistically unlikely [99]. In this case, a fractional
factorial design can be used instead. A fractional factorial design reduces the number of tests

PhD Thesis James Pallister

Individual optimisation exploration 33

000 001

011010

100 101

111110

X1

X2

X3

X1 = ∑
4
− ∑

4

000 001

011010

100 101

111110

X1

X2

X3

X1 = ∑
2
− ∑

2

Figure 4.6: The method of calculating the effect due to an optimisation. In the figure, the effect of the optimisation X1
is calculated.

required in an experiment to an arbitrarily low number. The number of tests required is limited
by the desired number of aliasing factors. This defines the ‘resolution’ of the design. In an
experiment which expects to have few higher-order interactions, a low-resolution design can be
used and the space can be explored with very few tests. As compiler optimisations are known to
have many interactions [100], a higher-resolution design is needed.

Figure 4.5b shows a ‘half-fraction’ design, derived from the design in Figure 4.5a. This
design reduces the number of runs from 8 to 4. By halving the number of runs, the tests can be
completed quicker, albeit with some information loss about the interactions between factors.
The exact information lost is given by the aliasing structure and the generator polynomial(s) of the
fractional factorial design [85]. The generator polynomial for the fractional factorial design in
Figure 4.5b is I = X1X2X3. The values of the parameters for each run can be generated from this
polynomial by assigning the values −1 (off) or 1 (on) to the factor and ensuring the equation
results in I = 1. The aliasing structure of a design specifies how many interactions of the factors
can be discerned from each other.

Another fractional factorial design with equivalent aliasing structure can be generating by
ensuring all values result in I = −1. Both these sets of runs are shown in Table 4.1, and are
equivalent in the amount of information that can be gained about a factor from them.

The generator polynomial describes the aliasing structure of the design. For example, in the
above fractional factorial design, the generator can be rearranged into three possible equations:

X1 = X2X3 Factor X1 is aliased with the two-way interaction between X2 and X3.
X2 = X1X3 Factor X2 is aliased with the two-way interaction between X1 and X3.
X3 = X1X2 Factor X3 is aliased with the two-way interaction between X1 and X2.

This aliasing structure means that every one-factor main effect is confounded with another
two-way interaction, and only gives a good estimate of the main effect if the two-way interactions
are insignificant. This is known as a resolution III design. Resolution V designs are more typically
used, since the main effect is only aliased with fourth order factors — this allows a good estimate
of the main effect when two- and three-way interactions may be significant. For example, a

James Pallister PhD Thesis

34 Optimisations designed for execution time

Run X1 X2 X3

1 1 1 1
2 1 −1 −1
3 −1 −1 1
4 −1 1 −1

(a) Runs for I = 1.

Run X1 X2 X3

1 −1 1 1
2 −1 −1 −1
3 1 −1 −1
4 1 −1 1

(b) Runs for I = −1.

Table 4.1: Fractional factorial designs for the generator I = X1X2X3.

om
it-

fr
am

e-
po

in
te

r
�

tr
ee

-fo
rw

pr
op
�

gu
es

s-
br

an
ch

-p
ro

ba
bi

lit
y
�

tr
ee

-lo
op

-o
pt

im
iz
e
�

tr
ee

-c
cp
�
dc

e
�

if-
co

nv
er

sio
n
�

tr
ee

-d
ce
�

in
lin

e-
fu

nc
tio

ns
-c
al
le
d-

on
ce
�
ds

e
�

m
er

ge
-c
on

st
an

ts
�

sh
rin

k-
w
ra

p
�

de
la
ye

d-
br

an
ch
�

ip
a-

pu
re

-c
on

st
�

tr
ee

-d
om

in
at

or
-o

pt
s
�

tr
ee

-c
h
�

tr
ee

-b
it-

cc
p
�

ip
a-

re
fe
re

nc
e
�

if-
co

nv
er

sio
n2
�

ip
a-

pr
ofi

le
�

tr
ee

-s
ra
�

au
to

-in
c-
de

c
�

m
ov

e-
lo

op
-in

va
ria

nt
s
�

tr
ee

-s
in

k
�

cp
ro

p-
re

gi
st
er

s
�

co
m

pa
re

-e
lim
�

tr
ee

-p
hi

pr
op
�

co
m

bi
ne

-s
ta

ck
-a

dj
us

tm
en

ts
�

tr
ee

-d
se
�

de
fe
r-
po

p
�

tr
ee

-c
op

y-
pr

op
�

sp
lit

-w
id

e-
ty

pe
s
�

tr
ee

-p
ta
�

tr
ee

-c
op

yr
en

am
e
�

tr
ee

-t
er
�

tr
ee

-r
ea

ss
oc
�

tr
ee

-fr
e
�

Optimisations

−12

−10

−8

−6

−4

−2

0

2

M
ai

n
eff

ec
t

(%
)

Significant

Significant

Energy

Time

Figure 4.7: The blowfish benchmark run on the STM32F0 SoC (Cortex-M0, O1).

resolution V design means that the effect of a single optimisation cannot be discerned from the
additional effect of a combination of four optimisations being enabled simultaneously.

The reduction in number of runs (tests) allows a large combinatorial design to be explored in
a reasonable time-frame: a set of 36 optimisations would be 68 billion tests if every combination
was tested, however can be sufficiently covered with a fractional factorial design (resolution V)
with 2048 runs. The statistical significance of the result can be tested using the Mann-Whitney U
test [84, 1]. This statistical test measures the likelihood of one distribution typically having
a larger value than the other, allowing the optimisations that have a significant effect to be
determined.

4.4.2. Individual optimisation analysis

Fractional Factorial Design (FFD) can be used to analyse individual optimisations for their
efficacy at reducing energy consumption. A FFD was run for each of the benchmarks in the suite
(see Chapter 3) on a total of five platforms.

Figure 4.7 shows the results of one FFD, the blowfish benchmark run on a STM32F0 SoC. The

PhD Thesis James Pallister

Individual optimisation exploration 35

sc
he

du
le
-in

sn
s
�

sc
he

du
le
-in

sn
s2
�

pe
ep

ho
le
2
�

tr
ee

-p
re
�

cs
e-
fo

llo
w
-ju

m
ps
�

op
tim

iz
e-
sib

lin
g-

ca
lls
�
gc

se
�

st
ric

t-
ov

er
flo

w
�

gc
se

-lm
�

cr
os

sj
um

pi
ng
�

ca
lle

r-
sa

ve
s
�

al
ig
n-

lo
op

s
�

al
ig
n-

la
be

ls
�

th
re

ad
-ju

m
ps
�

in
di

re
ct

-in
lin

in
g
�

st
ric

t-
al
ia
sin

g
�

pa
rt
ia
l-i

nl
in

in
g
�

al
ig
n-

ju
m

ps
�

de
le
te

-n
ul

l-p
oi
nt

er
-c
he

ck
s
�

in
lin

e-
sm

al
l-f

un
ct

io
ns
�

ip
a-

cp
�

sc
he

d-
in

te
rb

lo
ck
�

re
or

de
r-
bl

oc
ks
�

tr
ee

-b
ui

lti
n-

ca
ll-

dc
e
�

ex
pe

ns
iv
e-
op

tim
iz
at

io
ns
�

sc
he

d-
sp

ec
�

re
gm

ov
e
�

de
vi

rt
ua

liz
e
�

cs
e-
sk

ip
-b

lo
ck

s
�

ip
a-

sr
a
�

al
ig
n-

fu
nc

tio
ns
�

tr
ee

-v
rp
�

re
or

de
r-
fu

nc
tio

ns
�

tr
ee

-t
ai
l-m

er
ge
�

tr
ee

-s
w
itc

h-
co

nv
er

sio
n
�

re
ru

n-
cs

e-
af

te
r-
lo

op
�

Optimisations

−5

−4

−3

−2

−1

0

1

M
ai

n
eff

ec
t

(%
)

Significant

Energy

Time

Figure 4.8: The fdct benchmark run on the STM32F1 SoC (Cortex-M3, O2).

graph shows individual optimisations from GCC 4.7’s O1 optimisation level. The main effect (the
effect attributable to a single optimisation, rather than a combination of optimisations) for each
optimisation is plotted, for both time and energy, and the significant results as determined by the
Mann-Whitney U test are indicated by the bracket above or below the optimisations. The most
effective optimisation for this benchmark is omit-frame-pointer, an optimisation which frees an
additional register for use in general purpose calculations (see page 105 for more details). This
has the effect of significantly decreasing both energy and execution time on average (by similar
amounts). Most optimisations in this graph reduce the energy consumption of the processor
purely due to reducing the total run-time of the benchmark — the average power during the
benchmark is constant. The low complexity of the pipeline in the Cortex-M0 means there is not
a large amount of scope for divergence between energy and time. Many optimisations in the
middle of the graph are shown to have a low or insignificant effect, with the majority of these
fluctuations being influenced by measurement noise.

A similar trend is seen in Figure 4.8, on the more complex STM32F1 SoC. As in the STM32F1,
an optimisation that improves energy consumption also improves execution time. However,
now the effect on energy and time is not always proportional. The two most effective opti-
misations both perform instruction scheduling, with schedule-insns performing instruction
scheduling before register allocation and schedule-insns2 performing it after (see page 102).
For scheduling after register allocation, the greater reduction in time can be explained by the
presence of load/store pipelining in the Cortex-M3. Register allocation may insert additional
spill instructions, which the schedule phase attempts to place adjacent to one another, so that the
address and data phases of the memory access can be pipelined [101]. The total energy is only
lowered slightly, because only the base power overhead of the additional cycles is removed.

On the other hand, scheduling before the register allocation has the opposite effect — energy
consumption is reduced by more than execution time. Scheduling before register allocations

James Pallister PhD Thesis

36 Optimisations designed for execution time

Benchmark STM32F0 STM32F1 AM335x Epiphany XMEGA
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

2dfir W A . A I G M A H I B D T A Z
blowfish K J H K J H K J R D X I K J R
crc32 F E A F E A F E G . . . F . .
cubic B C . B C . B C . B C Y B C .
dijkstra F C B E C B E C B C B . F C B
fdct L A E L V B Q G V B I D G B C
matmult-int A O P A L P A H P B I D U A W
matmult-float A . . A L F H A B D I B A T G
rijndael H D N N A α S Q N D S A G O N
sha A M G A M E A M Q D A β A O U

Table 4.2: The most effective optimisations for each benchmark and platform. The key for each letter is given in
Table 4.3.

greatly affects the amount of spill code that is generated and if dependent operations are
clustered together, the register allocator may be able to minimise the total spill code. Minimising
the spill code has the overall effect of minimising energy more than time, since memory access
have an above average power dissipation — removing them will lower the average power, and
therefore energy.

4.4.3. Optimisation combination analysis

Individually, optimisations can have a significant effect on reducing energy (according to
the Mann-Whitney U test) on a specific benchmark for a specific target, however, there is not a
single optimisation or set of optimisations which perform well for all benchmarks and targets.
The set of effective optimisations for each benchmark and platform combination can be found
by extracting the top most results from each of the fractional factorial designs.

Table 4.2 shows the top three optimisations for each combination of benchmark and platform,
extracted from the results of all optimisations enabled by O1, O2 and O3. The highlighted
cells represent the most frequent effective optimisations, and the empty cells occur when no
significantly effective optimisation was found. This table does not exactly correspond to the
earlier graphs (Figures 4.7 and 4.8), since the table lists all optimisations rather than just plotting
the optimisations within a single optimisations group. For example, while schedule-insns is
the most effective optimisation in Figure 4.8 (blowfish on STM32F1, at O2), it is overall less effective
than the optimisations K, J and H, which had effects of −22%, −17%, and −7% respectively
(and are all from the O1 group).

The most common optimisation is tree-loop-optimize (A). The optimisation performs
a set of simple loop optimisations such as loop invariant motion and loop unswitching (see
Appendix A). Since the optimisations focus on increasing loop performance, the benchmarks
that are particularly loop intensive are affected the most — matmult-int, matmult-float, rijndael
and sha. The second most common optimisation is tree-dominator-opts (B), performing
a collection of simple optimisations during the dominator tree traversal. These optimisations
include constant propagation, copy propagation, redundancy elimination, range propagation,
expression simplification and jump threading (see pages 99–106). This optimisation ranks highly
on all platforms for the cubic and dijkstra benchmarks, as well as being effective in general for
the Epiphany processor. However, this optimisation is not as effective for any other benchmark
or platform, suggesting that the structure of these two benchmarks is receptive to these types of
transformation.

PhD Thesis James Pallister

Individual optimisation exploration 37

ID Count Flag ID Count Flag
E T E T

A 22 22 tree-loop-optimize O 3 3 guess-branch-probability

B 17 16 tree-dominator-opts P 3 4 inline-small-functions

C 11 11 tree-fre Q 3 5 schedule-insns2

D 8 8 dce R 2 2 tree-forwprop

E 7 7 move-loop-invariants S 2 3 schedule-insns

F 7 9 inline-functions T 2 2 gcse

G 7 7 tree-ter U 2 2 regmove

H 6 4 omit-frame-pointer V 2 2 ira-loop-pressure

I 6 7 tree-ch W 2 2 tree-pre

J 4 4 inline-functions-called-once X 1 1 ipa-profile

K 4 4 ipa-pure-const Y 1 1 combine-stack-adjustments

L 4 2 ipa-cp-clone Z 1 0 auto-inc-dec

M 4 3 predictive-commoning α 1 1 tree-pta

N 4 4 tree-sra β 1 0 dse

Table 4.3: The optimisation flag corresponding to each letter in Table 4.2. The E column is the frequency of effective
optimisations for energy, and the T column is an equivalent count but for execution time (full table equivalent of
Table 4.2 not shown). While 82 optimisations were present in the full set, many were never effective enough to be in
the top three.

A similar pattern is seen with the third most-effective optimisation (tree-fre) — there are
specific benchmarks for which the optimisation is particularly effective across many of the
platforms. Logically, benchmark structure is one of the most important things in determining
whether or not the optimisation will be effective, because the optimisation attempts to transform
a specific pattern in the code.

There is a set of optimisations which is often effective on the Epiphany processor (B, D and
I), whereas there is no set of optimisations which are effective for the other processors. This is
likely due to parts of the compiler being significantly different from the other platforms (which
share certain parts of the compiler, since the architectures are all related). In addition to the
tree-dominator-opts optimisation flag explained above, dead code elimination (D) and loop
header copying (I) are the frequently effective optimisations for the Epiphany (see Appendix A,
pages 100 and 103). Dead code elimination can be divided into two types — unreachable code
elimination and unused code elimination. In this case, removing unused code can speed-up
execution since there is less total work to perform, however removing unreachable code can also
decrease execution time. In combination with other optimisations, removing unreachable code
can remove branches, and increase the efficacy of the static analysis (through less control flow),
which enables other optimisations.

There are commonalities seen between benchmarks on the ARM based platforms (STM32F0,
STM32F1 and AM335x), however, these are not due to their instruction set, since each of these
processors uses a different instruction set — Thumb, ThumbV2 and ARM mode respectively.
However, the total number of addressable registers is the same for each instruction set, sug-
gesting that the effectiveness of some of the optimisations is limited by the register pressure on
these platforms. The omit-frame-pointer optimisation is effective because of the high register
pressure — this optimisation allows an extra register to be used for general purpose computation.

Table 4.4 lists the optimisations which increase the energy consumption of that benchmark
on the specified platform by the largest amount. There are few common optimisations across a
single benchmark or platform in this table, because of the general design of the optimisations. A
typical optimisation is designed to recognise a specific pattern in the source code, and transform

James Pallister PhD Thesis

38 Optimisations designed for execution time

Benchmark STM32F0 STM32F1 AM335x Epiphany XMEGA
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

2dfir O B I .
blowfish S . . D . . C . . N
crc32 Q
cubic
dijkstra . . . A . . A D
fdct D . . G A . G A . E . . B G .
matmult-int E B . .
matmult-float H J . B R .
rijndael F M . F A . E T U .
sha F P . L K C C K L J H . I . .

Table 4.4: The least effective optimisations for each benchmark and platform. The key for each letter is given in
Table 4.5.

ID Count Flag ID Count Flag

A 5 schedule-insns L 2 tree-dominator-opts

B 4 omit-frame-pointer M 1 tree-forwprop

C 3 tree-fre N 1 tree-copyrename

D 3 ira-loop-pressure O 1 inline-small-functions

E 3 tree-ter P 1 move-loop-invariants

F 3 tree-reassoc Q 1 tree-copy-prop

G 3 tree-loop-optimize R 1 tree-pre

H 2 if-conversion2 S 1 tree-ch

I 2 predictive-commoning T 1 tree-vrp

J 2 cprop-registers U 1 regmove

K 2 gcse

Table 4.5: The optimisation flag corresponding to each letter in Table 4.4 and frequency of the optimisation flag in the
table.

it into a pattern which is believed to perform better. Occasionally, for a specific combination
of benchmark and optimisation a piece of code is transformed and leads to poorly performing
output code, but this is not as common.

The only optimisation which is frequently negative for a particular SoC is omit-frame-pointer,
on XMEGA, having a negative effect on four of the 10 benchmarks. It is expected that this optimi-
sation would have only marginal effect on this architecture, because the AVR has 32 registers and
typically low register pressure. However, on examination of the generated code, the compiler
inserts a larger number of load and store instructions to stack-based variables when enabling
this optimisation, leading to an increase in execution time.

The schedule-insns optimisation appears most frequently in the table, clustered around
dijkstra and fdct on the STM32F1 and AM335x. Since this optimisation schedules instructions
before register allocation, the scheduling causes a suboptimal register assignment for these
particular benchmarks, increasing spill code and therefore energy consumption.

The third most common negative optimisation is tree-fre — ‘full redundancy elimination’.
The optimisation considers the case where there are multiple identical expressions on all control
paths for a region in the program (see page 106). The optimisation increases energy consumption
for the AM335x on two benchmarks, whereas it decreases energy on the same platform for two
different benchmarks. In this case the optimisation is likely inhibiting a subsequent optimisation

PhD Thesis James Pallister

Choosing optimisations using genetic algorithms 39

which would reduce the energy consumption, since generally removing redundant computation
should increase performance and decrease energy.

There are many fewer optimisations seen to increase the energy consumption, with some
benchmarks having no optimisations which have a significant effect. This is due to the decision
of whether an optimisation can be applied being decided based on heuristics from the source
code and the heuristic being correct in the majority of instances.

This analysis showing the top optimisations for energy ignores the time component which
may be partially responsible for the reduction in energy consumption. Table 4.3 also contains
the most frequently effective optimisations when performing the same analysis for execution
time, instead of energy. The most commonly effective flags for execution time are very similar
to that of energy, adding weight to the argument that it is really the execution-time reduction
which is leading to the energy efficiency.

Overall the selection of the best optimisation is highly dependent on the benchmark, and
on the compilation target, motivating the need for a better strategy for selecting optimisations.
Many optimisations are effective across platforms for specific benchmarks, however there are
also optimisations whose effectiveness depends on the processor target. The most common
effective optimisations are those which have grouped together smaller optimisations but without
having the ability to separate individual passes, rather than the grouped optimisation flag it
is impossible to tell whether all the constituent optimisations are effective. However, all the
individual passes implement transformations which reduce the total amount of work performed
in the applications and so are likely to be beneficial in most cases.

The best and worst optimisations for both energy and time are very similar – the majority
of energy reduction is due to an execution time saving. This is expected, since most of the
optimisations are attempting to reduce the total amount of code executed, or reorganise the code
such that it executes faster.

4.5. Choosing optimisations using genetic algorithms

The analysis in the previous section determined which optimisations have the most impact
on the benchmarks, but since it is a statistical analysis it does not necessarily imply that best
performing optimisations form the best performing set to pick. It is possible that an individual
optimisation may overall be ineffective, but has a large effect on the energy or time when other
optimisations have structured the code in a specific way. In this section, a genetic algorithm is
used as a way towards finding the best possible configuration of optimisations. By attempting
to optimise the energy consumption, rather than just analyse which optimisations increase or
decrease the energy, the hypothesis of existing compiler optimisations improving energy via a
reduction in execution time can be explored.

4.5.1. Genetic algorithms

Genetic algorithms are a biologically-inspired method for choosing parameters to an op-
timisation problem. A genetic algorithm is used here to choose the optimisations to apply
to the source code, allowing unexpected combinations of optimisations to be explored. The
genetic algorithm evaluates each possible solution using a fitness function, which can be tuned
to different goals. By giving different goals of minimising energy consumption or execution
time, the genetic algorithm will produce different solutions.

The genetic algorithm generates a pool of random individuals, where each individual (here, a
bit string) specifies which optimisations are enabled, as in the left side of Figure 4.9. Each bit
in the string represents an enabled or disabled optimisation. Each individual in the pool has

James Pallister PhD Thesis

40 Optimisations designed for execution time

Optimisation encoding

1 0 1 1 0 1 0 0 1 1

First opt Last opt

Enabled Disabled

Crossover

1 0 1 1 0 1 0 0 1 1

1 1 1 0 0 0 0 1 0 0

1 0 1 1 0 1 0 1 0 0

1 1 1 0 0 0 0 0 1 1

Mutation

1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1

Figure 4.9: The encoding used for a standard genetic algorithm and illustration of the crossover and mutation
operators.

its energy and execution time measured, then the fitness function applied (see below). Each
individual in the population can then be ranked by the fitness function, and the top n selected to
be propagated to the next generation. Each optimisation string that is selected is first crossed-
over with another, then mutated, with a random number of mutations (see the right side of
Figure 4.9).

As the number of generations increases, the optimisation strings with the best fitness are kept
and combined together. This eventually leads to a set of optimisation strings which have a high
fitness — whether that is a low energy consumption or a low execution time, as selected by the
fitness function.

The genetic algorithm was applied to each of the benchmarks, with a variety of fitness
functions. A pool size of 30 optimisation strings was selected with a mutation rate of 5%. The
mutation rate specifies the likelihood of each bit in the individual being inverted, and was
increased for each generation which did not see an improvement on the previous. The genetic
algorithm ran for 100 iterations, and the best set of optimisations for each benchmark and
energy/time was recorded.

4.5.2. Fitness functions

A variety of fitness functions are used, allowing some of the main hypotheses to be tested.
The fitness functions are all of the form F(e, t), where e is the energy consumption of the test,
and t is the execution time of the test. The fitness function returns a value, where a higher value
represents an individual which better fits the optimisation goal.

Minimise energy. F(e, t) = 1
e . This is the goal of minimising the total energy consumption of the

benchmark, without considering execution time. The goal is likely to reduce execution
time as well, if the hypothesis of energy consumption and execution time being almost
proportional is true.

Minimise time. F(e, t) = 1
t . This is the goal of minimising the total execution time of the bench-

mark, without considering energy consumption, but is likely to reduce energy consumption
too. A useful comparison can be made with the previous result — a similar result should
be obtained if energy consumption and execution time are similar the majority of time.

Minimise power. F(e, t) = t
e . To minimise power, both energy consumption and execution time

are used. Since there are no additional constraints on energy or time, it is possible the goal
is just as likely to select a result which decreases power by increasing just the execution
time, as it is to select a result which reduces the power by reducing energy consumption.

PhD Thesis James Pallister

Conclusion 41

However, this metric indicates an approximate lower bound on the power dissipation of
the benchmark.

Maximise power. F(e, t) = e
t . The goal of maximising power dissipation attempts to find an

optimisation sequence which causes the highest average power dissipation. The goal is
used to find an approximate upper bound on the power dissipation. With the results of
the minimise power dissipation goal, the range between them should show how much
divergence between energy and time a set of compiler optimisations can achieve.

4.5.3. Results

For each benchmark and fitness function, the genetic algorithm was run on the STM32F1
processor. This processor was chosen because it is representative of deeply embedded processors
and is one of the most commonly used of the available SoCs. The results are shown in Figure 4.10,
clustered by benchmark, then by fitness metric. The energy consumption () and execution
time () are shown for the first two fitness goals, and the average power () is shown for the
minimise- and maximise-power goals.

In all cases, the goals targeting lower energy consumption and lower execution time produce
a set of optimisations which perform similarly. This adds weight to the hypothesis that with the
existing compiler optimisations, optimising for time is the same as optimising for energy. The
genetic algorithm is able to significantly lower the energy and time, by up to 30% further over
the O3 optimisation sequence.

The goals attempting to maximise or minimise power show more range, but are still within
±14% of the baseline power for all benchmarks. Since this is an approximation of the minimum
and maximum power the benchmark can execute at, it puts limits on how much the current
optimisations in the compiler affect the power dissipation, rather than achieving energy efficiency
through speed. The benchmark that has the lowest average power is matmult-int, at 14% lower
power dissipation, suggesting that the optimisations cannot significantly reduce the average
power as much as the execution time is lowered (22% for matmult-int).

The results for power also cause the energy and time metrics to vary wildly, in some cases
increasing the execution time of a benchmark by almost 50% to achieve a 10% lower power
(dijkstra). The single focus of the metric on power is the cause of this, and another fitness term
would have to be added to the goal to prevent execution time or energy from increasing too
much for practical use.

4.6. Conclusion

The 82 currently available optimisations existing in the compiler (GCC) have been extensively
evaluated, from the optimisation level grouping (O0–O3), to individual optimisations. In almost
all cases, there is a close correlation between execution time and energy consumption. The overall
optimisation levels tend to make the application faster and more energy efficient in proportion,
with a few differences in the more complex processors. For the existing optimisations, the
complexity of the processor’s pipeline affects how much divergence is possible between energy
consumption and time.

Each of the optimisation flags were explored individually, using fractional factorial design to
minimise the total number of tests necessary, while still accounting for interactions between op-
timisations. With this methodology some optimisations were found to affect the proportionality
between energy and time, such as instruction scheduling, and optimisations which change the

James Pallister PhD Thesis

42
O

ptim
isations

designed
for

execution
tim

e

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Lo
w

en
er

gy
Lo

w
tim

e
Lo

w
po

w
er

H
ig

h
po

w
er

Fitness function / metric

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
E

n
er

gy
,

ti
m

e
or

p
ow

er
re

la
ti

ve
to

O
3

2dfir blowfish crc32 cubic dijkstra fdct matmult-float matmult-int rijndael sha

Figure 4.10: The results for multiple runs of the genetic algorithm. Each cluster is the results for individual
benchmarks. Within each cluster the results of optimisation for each metric is given (stated on the x-axis). Power is
omitted for low-energy and low-time.

Energy

Time

Power

PhD
Thesis

Jam
es

Pallister

Conclusion 43

number of memory accesses. Apart from these optimisations, most others purely reduce the
execution time, and the energy efficiency follows from that reduction.

Many optimisations are effective for multiple benchmarks, but there are a few which are more
widely effective than others. Most of these optimisations are collections of simple transforma-
tions, such as common subexpression elimination and constant propagation. Other optimisations
are particularly profitable for certain benchmarks — the exact structure of the program lends
itself to a specific type of transformation. There are also some optimisations which are seen on
a per-platform basis. There are many optimisations which never appear to have a large effect
(i.e. appear in the top three). Some of these optimisations are effective, but have a smaller effect,
and some do not apply to either the platform or the benchmark. There are fewer commonalities
amongst the optimisations which perform poorly and increase the energy consumption, but
there are individual optimisations which exhibit negative effects for a specific combination of
benchmark and platform — these are likely because the compiler’s heuristics wrongly indicated
it should apply the transformation. For example, the omit-frame-pointer optimisation per-
forms poorly on the XMEGA platform — triggering additional loads and stores to be inserted by
the register allocator.

An approximation of the best possible optimisation selection is found using a genetic algo-
rithm, with various goal functions. When using energy or time as the goal metric, the search
produces very similar results — the search is not able to find a set of optimisations which reduce
the energy consumption at the expense of execution time and vice versa. A similar exploration
was undertaken by setting the goal of minimising power as much as possible. The genetic
algorithm was only able to find sequences which reduce power by up to 14%, with an average of
7%. This suggests that existing optimisations are not able to reduce energy significantly without
also affecting the execution time — there is a limit to the amount of average power change that
existing optimisations can cause.

This chapter answers the first set of research questions: “Do existing compiler optimisations
save energy purely by reducing the kT coefficient?”, where kT is the effect of the optimisation
on the execution time, and therefore energy (see Chapter 2). The majority of the optimisations
reduce the execution time (and by definition kT), and this affects the energy consumption of the
program being tested. There are very few optimisations for which kP, the optimisation’s effect
on power, is significantly different from 1. Instruction scheduling can increase kP (see Figure 4.8
on page 35), while reducing memory accesses decreases kP. Overall, these optimisations are
sometimes able to save energy, when the execution time is decreased enough, i.e. kT < 1

kP
.

Overall for embedded platforms and existing compilers, compiling for energy is very similar
to compiling for execution time, since most of the optimisations change the program in a way
that either makes the program faster with the same average power, or reduces the total amount
of work, also reducing energy consumption in proportion to execution time. This motivates
the search for a new class of optimisations which attempts to reduce energy consumption by
reducing the average running power of the SoC. The rest of this thesis investigates this class of
optimisations.

James Pallister PhD Thesis

44

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Chapter 5.
Optimisations designed for energy consumption

Work in this chapter also appears in the following publications:

• James Pallister, Kerstin Eder, Simon J. Hollis and Jeremy Bennett. “A high-level
model of embedded flash energy consumption”. In: CASES14 Proceedings of the 2014
international conference on Compilers, Architecture, and Synthesis for Embedded Systems.
New Delhi, India. ACM Press, 2014, p. 74.

• James Pallister, Kerstin Eder and Simon J. Hollis. “Optimizing the flash-RAM energy
trade-off in deeply embedded systems”. In: CGO’15 Proceedings of the 2015 international
symposium on Code Generation and Optimization. San Francisco, USA. ACM Press, 2015.

5.1. Introduction

Historically, optimisations have been added into compilers to increase the speed or decrease
the code size of an application. Optimising for these metrics also affects energy consumption.
For example, increasing the speed of a program will decrease the total energy consumption due
to less work performed, or less leakage (since the processor can be put into a low power mode
sooner), and decreasing the code size may reduce energy consumed inside a cache or prefetch
buffer since fewer costly memory accesses need to be performed.

As seen in the previous chapter, most of the existing optimisations change energy and execu-
tion time in proportion, with few optimisations causing a large deviation from this correlation.
This suggests there may be other possible optimisations which specifically target energy con-
sumption by reducing the average power, rather than purely reducing execution time. Some
optimisations have been proposed by previous work, and this chapter identifies two energy
characteristics which are then developed into optimisations that fall into this new class. These
optimisations reduce energy by attempting to lower the average running power of the software
running.

Optimisations for energy consumption are typically much more target specific than opti-
misations for performance or code size — e.g. redundancy elimination (see page 106) will
almost always reduce code size to some degree, for all benchmarks and all SoCs. In contrast
to performance optimisations, energy optimisations often exploit processor or chip-specific
functionality and characteristics, making them more challenging to develop.

This chapter discusses two novel energy optimisations, which can be achieved by using
information about the target processor. The optimisations are different from performance
optimisations in that they affect the positioning of the code that is executed, rather than radically
transforming the code.

Code alignment. It is observed that the alignment of code during execution from embedded
flash has an impact on the energy consumption. In embedded systems, code is often
executed directly from flash, and when these accesses cross particular internal boundaries
a corresponding additional energy cost is incurred. Since the code’s execution time does
not change with its alignment, this enables an optimisation which lowers average power.

The phenomenon is modelled (Section 5.3) and then an optimisation using this model is

46 Optimisations designed for energy consumption

developed (Section 5.3.2). The optimisation is not able to save significant energy due to the
precise characteristics of the SoCs tested.

RAM overlay. In some processors code can be executed from either flash or RAM, with little
difference in execution time. However, the execution from flash is significantly more power
hungry than from the RAM. Thus, if all the code were to be executed from RAM, significant
energy savings could be achieved. Unfortunately there is typically 8–16 times more flash
than RAM, meaning only some of the code can be moved to RAM. Other complications
include difficulties in jumping between the two memory spaces, and having both fetches
and data accesses to the RAM can cause contention on the memory buses, resulting in
higher latency.

These trade-offs are explored in Section 5.4, and the optimal solution found using Integer
Linear Programming (ILP). This is used to implement the RAM overlay optimisation,
saving an average of 10% and up to 26% of the SoC’s energy.

This chapter first discusses existing attempts at creating optimisations for energy consumption.
Then, the analysis and optimisation based on code alignment in flash memory is presented
and evaluated. Then, the RAM overlay optimisation is presented and evaluated. Finally, both
optimisations are discussed along with their applicability and efficacy.

5.2. Background

Many studies develop new optimisations to target energy consumption or power dissipation.
Roughly these attempts fall into three categories: attempting to minimise the amount of bit
flipping inside the processor, optimising resource usage (including scheduling), or disabling
parts of the processor to minimise the leakage power dissipation.

Various studies examine the impact of existing optimisations on energy or power, and tune the
optimisations for these metrics. However, optimisations specifically targeting energy consump-
tion can be developed. These optimisations may increase performance (although not as their
primary goal), but often present a trade-off between execution time and energy consumption.
This section primarily looks at optimisations which attempt to minimise energy consumption
without architectural modifications — these are optimisations which can be implemented with
existing processors.

Dynamic voltage and frequency scaling. DVFS exploits the non-linear scaling between voltage
and power consumption, and the relationship between voltage and frequency. The energy
consumed by a single bit flip in a transistor is lower if the voltage is reduced, however, it
requires a larger amount of time to perform the transition. Since the energy for each bit
flip is proportional to the square of the voltage, decreasing the frequency and decreasing
voltage results in an energy saving, but places limits on the maximum clock frequency for
a given voltage [102].

Hsu et al. [103] develop an algorithm to decide when scaling down the CPU’s frequency
and voltage is beneficial. The scaling is applied where the CPU can be slowed without
significant loss in performance achieving up to 28% reduction in energy consumption at a
5% increase in execution time. The algorithm uses profile information about each region of
the program along with predetermined voltage-frequency pairs to determine when and
where to change the voltage frequency of the CPU.

The same approach is taken in [104], applied to an embedded processor. This processor
only had two possible voltage-frequencies pairs and a lower level of energy savings was

PhD Thesis James Pallister

Background 47

found with this configuration.

Register file and allocation optimisations. Several studies have attempted to optimise register
allocation, since memory operations are typically more expensive in time and energy than
data manipulation instructions. Memory accesses are also proportionally more expensive
in energy consumption, since they traverse a large portion of the system’s circuitry and
area.

Zhang et al. [105] attempt to re-allocate registers as a post-compilation pass, finding that
the number of memory loads and stores can be reduced. The reduction is analysed with
the cache simulator, CACTI [31], and an architectural-level power analyser, WATTCH [30],
and found to reduce data cache energy consumption by up to 15% and total cycle count by
34%, on a Pentium processor, thus indicating that much of the energy saving was actually
due to a lower execution time.

Another study attempted to move global variables into registers to reduce cache power
dissipation [106]. Assigning global variables with a long lifetime to registers reduces the
overall number of loads and stores, potentially increasing efficiency more than variables
with smaller live ranges which do not completely utilise a register. Additionally, global
variables are often non-local to the program’s current working set, and this may stop
necessary data from being evicted from the cache, preventing future cache misses. The
technique was effective at reducing energy in some cases, however, it was hard to predict
the optimisation’s effect due to its complex relationship with register pressure.

Some studies have attempted to minimise the energy cost due to register selection [107,
108]. Registers are renamed so that consecutively accessed registers have similar register
numbers, with few bit flips. These studies achieved large reductions in the amount of bit
flips between register numbers. However, the register selection bus is typically a small part
of the processor, so these optimisations may only marginally reduce energy.

Instruction scheduling. Instruction scheduling has been explored as a means to minimise bit-
flips between consecutive instructions. The bus between main memory and the processor
or caches is often power hungry to toggle (long wires resulting in higher capacitance and
higher energy to flip) and is a target for minimising flips. Scheduling the instructions of
a program such that they cause fewer bits to toggle on the bus should reduce the overall
energy consumption. Tomiyama et al. [109] achieve 28% fewer transitions in the instruction
stream but do not translate this to energy savings.

Other work by Parikh et al. [2] explores different scheduling constraints and applies
an energy model to the generated code, resulting in up to a 10% decrease in energy
consumption. However, this relies on significant circuit switching effects (up to 150% of the
base instruction energy cost in the energy model) which is highly dependent on processor
architecture and shown to be less than 10% in other processors [13].

Toburen et al. [110] apply a similar optimisation to VLIW (Very Long Instruction Word)
processors — scheduling instructions simultaneously up to a maximum energy limit per
cycle. This was achieved by assigning an energy cost to each functional unit and iteratively
scheduling instructions from a dataflow DAG (Directed Acyclic Graph) until the energy
limit was reached and resulted in a flatter power profile for the application.

Instruction selection. The actual selection of instructions can be altered based on their energy
consumption. Strength reduction is an optimisation which exchanges two mathematically
identical instructions based on some metric. Often this optimisation is used to remove
multiplies from code, for example r0× 2 can be changed for r0 + r0 in many processors

James Pallister PhD Thesis

48 Optimisations designed for energy consumption

where addition is faster than multiplication. This technique can also be used to improve
energy [24]. In many embedded processors both multiplication and addition can take the
same number of cycles. However, a multiply instruction is often more power hungry, due
to the comparatively large amount of circuitry to implement it.

Instructions can also be selected based on multiple criteria. Wu et al. [3] examine the case
where two instruction sets are present in the processors — a 32-bit, powerful instruction
set (all registers and functions possible), and a more restricted 16-bit instruction set, in this
case ARM and Thumb respectively. The study uses a multi-objective ant colony algorithm
to select which functions should be encoded using the smaller instruction set, showing that
a good trade-off between execution time and code size can be achieved. It is likely that a
similar technique would allow selection based on energy.

Inserting sleep modes. Sleep modes are often an effective way of reducing static power since
the majority of the processor can be turned off, with only certain areas of the chip remaining
powered.

Min et al. [111] describe a framework for deciding when a sleep state should be entered
based on the expected rewards, including the prediction of interrupts. This resulted in
saving significant energy while only minimally impacting performance.

Resource scheduling is another technique which can enable sleep modes to be utilised
effectively. By scheduling actions such that they coincide with each other, the necessary
components or processor can be enabled fewer times, as explored by Venkatachalam et
al. [112]. Scheduling reduces the number of transitions between sleep modes and running
modes and thus energy. This is very similar to scheduling tasks such that they take a
minimal amount of energy, as in Yao et al. [18].

Scratchpad memory utilisation. Scratchpad memories are implemented in many processors as
an area of on-chip, fast RAM. The speed of this RAM results in large energy savings, partly
due to the performance increase and partly due to the reduction in expensive off-chip
accesses. This memory can be managed by the compiler, which automatically places code
and data into the scratchpad memory [113].

A technique for moving code and data objects to a scratchpad memory was compared to a
similarly sized cache in Steinke et al. [114], finding the scratchpad memory almost always
significantly outperformed the cache for both execution time and energy consumption.
This is due to the scratchpad memory’s lower complexity, and therefore lower energy per
access, as well as the advantage of using the compiler’s knowledge of the program. The
technique was further compared to a static technique also reporting significant energy
savings, finding that scratchpad memories use 43% less energy than a cache of the same
size (although a significant proportion of this is due to decreased execution time, which
was up to 23% lower). The approach formulates a model describing each memory and uses
Integer Linear Programming (ILP) to produce a set of objects which should be placed into
the scratchpad memory. The assignment was static — code and data were placed in the
scratchpad memory at start-up and not moved back to main memory, contrasting with
the more flexible cache. An extension to any number of scratchpad memories is produced
in [113], where basic blocks can be statically allocated to any memory to minimise execution
time and energy consumption. This considers the possibilities that there may be a cost
associated with branching between memory spaces.

Kandemir et al. [115] use Presburger formulae (a form of decidable arithmetic without
multiplication) to reduce the number of off-chip accesses, storing the data required by array

PhD Thesis James Pallister

Background 49

accesses in a scratchpad memory. The approach is dynamic, selecting a subset of the array
and reorganising the access pattern to maximise the use of this subset. Compared to using
a cache the approach reduces the off-chip accesses by 39%, however the same optimisation
of selecting and reorganising the access pattern is not applied for the cache experiments. A
more generic method of dynamically moving code and data into a scratchpad memory is
provided by Verma et al. [5], where the problem is shown to be analogous to the global
register allocation problem and is solved with ILP.

Further scratchpad memory studies have explored how multiple tasks can cause inter-
ference when each task places data into the memory, in Gauthier et al. [116]. A method
of minimising the interference is proposed, which attempts to minimise the energy con-
sumption and maximise the number of accesses to the scratchpad memory. An energy
reduction of up to 85% was reported, however much of this is likely due to the increase
in performance. Kandemir et al. [117] explore embedded multiprocessors each with a
scratchpad memory, accessing the same DRAM, and succeed in reducing the energy-delay
product by up to 30%.

All of these scratchpad memory studies only consider the case where an alternative memory
to the main memory is present, and it is faster or more energy efficient. None consider the
case where code is executed directly out of flash and could instead be executed out of RAM
for energy savings, as investigated in this thesis. To achieve this, further constraints are
needed in the model, to prevent all of the RAM being used, as well as balancing trade-offs
between the overhead of being in RAM, the overhead of branching between memories and
the energy reduction form executing in RAM. These are discussed further in Section 5.4.

Accuracy reduction. Accuracy of computation can sometimes be reduced without significantly
impacting results, to improve both the energy consumption and execution time. EnerJ [118]
is an extension to Java adding approximate data types, showing that there were potentially
large energy savings if lower accuracy could be exploited.

Eltawil et al. [119] give a survey of many discuss possible trade-offs which may occur
between power and reliability, at different levels of the system, from transistors up to
software. At the compiler level, various software error correction, and redundancy insertion
schemes are discussed. However the majority require hardware support, either to place the
processor in a lower accuracy mode, or lowering the voltage to lower power and possibly
reduce reliability.

Flash memory. Embedded flash memory is not often studied for its energy impact, with studies
focusing on higher-performance devices and modelling SSDs [120]. However, the mod-
elling of NAND flash has been studied at a very fine granularity in [121]. Their tool,
FlashPower, uses a large number of parameters describing the flash memory, along with
the device feature size, to predict the read, program and erase energies. The tool achieves
between 10% and 40% accuracy in a case study and is shown to be useful for design space
exploration. In devices with embedded flash, many of the parameters’ values are unknown
due to manufacturers not disclosing the exact details of their device, making this tool less
useful for compiler or developer use.

Code overlays. Moving sections of code between memory spaces has been explored extensively
for scratchpad memories. In a system with a scratchpad memory, the main memory is
typically slow, and a scratchpad memory can be used as a user-controlled cache.

Kim et al. [122] consider a system which has both flash memory and SRAM and attempt to
minimise the amount of SRAM required by paging small areas of flash into SRAM, rather

James Pallister PhD Thesis

50 Optimisations designed for energy consumption

than mirroring all of the flash. Their optimiser clusters functions into the same page, and
rewrites certain branches to call its page manager, which dynamically copies sections of
flash into SRAM as needed. Overall this manages to save an average of 40% of the code
memory required with an increase in both energy consumption and execution time of 10%
and 14% respectively. This study does not see any energy efficiency gains from moving
code to SRAM since entire pages of flash are loaded multiple times, and the specific energy
models used. The study modelled the energy for a 65nm flash chip, and a 90nm SRAM
chip; with these parameters it is possible the flash is more energy efficient than the SRAM.
This contradicts our measurements reported in Section 5.4 (Figure 5.11) for when both
SRAM and flash are on the same technology node.
A similar approach is taken in [123], attempting to reduce the SRAM usage of synchronous
data flow applications. A clustering algorithm based on genetic algorithms is used to
decide where to place various portions of the data flow graph, so that related code can be
loaded into SRAM at once.
Overlaying functions from flash into RAM is a technique employed by deeply embedded
SoCs [124], when regions of RAM have differing performance characteristics. This is
typically performed by the developer, and for performance reasons, rather than energy.

Cache locality algorithms. Arranging code and data so that it uses the available cache space
will has a large impact on performance and energy. Many studies consider how cache
energy can be improved, however require hardware modifications, such as placing the
cache in a drowsy state [125], or purely target performance by modifying the code and
data layout [126] (which should reduce the overall energy). Other studies use allow the
processor to use the knowledge of caches misses to place non-critical instructions into
power-efficient, but slower functional units.
In general, deeply embedded SoCs do not have caches, although it is possible that similar
techniques could be applied in some cases. For example, the position of code in flash
memory has some similar characteristics to that of caches — if code is aligned then it will
require less energy. Reusing a code-layout-oriented optimisation may reduce energy in
deeply embedded SoCs.

Overall there are a wide range of techniques to reduce energy consumption via the compiler.
The majority of these techniques do not perform complex transformations of the program’s
AST or IR, instead focusing on the context of the executing code — how and where the code
is executed. This contrasts with traditional optimisations for performance which minimise the
amount of code being executed, or attempt to parallelise it (either via instruction level parallelism
or vector instructions).

The existing attempts at finding optimisations can be used to guide the search and creation of
new energy optimisations. By contrast finding a new optimisation is inherently difficult, since it
either requires extensive measurements, or an analytical approach considering low level bit-flips.
The analytical approach is often challenging due to the complexity of the problem, and the high
level nature of compiler transformations. The optimisations in the rest of this chapter were
found by measuring the target systems under different configurations and examining how the
energy behaviour changed.

5.3. Embedded flash memory

Embedded flash memory is typically used in deeply embedded SoCs and is on the same die
as the processor. The memory is typically single cycle access, depending on the clock rate of

PhD Thesis James Pallister

Embedded flash memory 51

FlashRAM

Figure 5.1: Image of the die of a STM32F103VGT6. The SoC is from the same family as the STM32F1, with a larger
flash and RAM (1MB and 96kb respectively) [127].

the processor utilising it. Since the flash memory can be large and take up a large percentage
of the silicon area, the power dissipation of this component is significant in the overall chip.
Figure 5.1 shows an image of the silicon die of a very similar chip to the STM32F1 (differing only
in memory sizes).

Embedded flash is typically structured hierarchically, divided into pages, blocks, word-lines
and then bit-lines. Figure 5.2 shows a typical arrangement of flash cells. In this figure, the flash
memory is divided into pages (shown vertically), then each page is divided into blocks (shown
inside the dashed boxes). The address is partially decoded to select which page and block the
required memory address is located in. Each block is divided into k word lines, and n bit-lines.

The memory is typically accessed n bits at a time, reading from bit-lines B0, ..., Bn−1 of the
correct page [128, 129]. To perform the access, each bit-line is precharged to a specific voltage
between VDD and GND. The address decoder for the correct block then asserts the control line
for the required word-line, and then uses Sb and Sg to connect the set of flash cells to the bit-line
and ground, respectively. This has the effect of pulling the voltage on the bit-line up or down,
depending on the stored charge in the flash-cell. The sense amplifiers at the end of each bit-line
amplify this change and buffer the value onto the data bus, where the data is returned to the
processor.

Figure 5.3 shows the effect that alignment in flash memory has on the execution of code for
six of the platforms with flash memory. For these tests, both 8-byte and 10-byte loops were
aligned to different offsets from the beginning of memory, and their energy consumption per
loop iteration measured. For these small loops there is between a 5% and 15% change in energy
consumption, depending on the alignment of the code. This is seen on all SoCs except the
MSP430FR SoC — this SoC is identical to the MSP430F except it uses FRAM (Ferroelectric RAM)
instead of flash as its non-volatile storage. Each of the six platforms shows a different energy
consumption profile, although there are common features between SoCs. The common features
are lettered A – D , and explained below.

A Feature A highlights the zigzag pattern seen every 4 bytes of alignment — alternating

James Pallister PhD Thesis

52 Optimisations designed for energy consumption

A
dd

re
ss

de
co

de
r

B0 Bn−1

W0

Wk−1

Sb

Sg

A
dd

re
ss

de
co

de
r

B0 Bn−1

W0

Wk−1

Sb

Sg

Bl
oc

k
0

of
pa

ge
0

Bl
oc

k
0

of
pa

ge
1

M
or

e
pa

ge
s

in
fla

sh

Additional blocks in each page

Sense
amplifiers

Data bus to processor

Transistors to
precharge
bit-lines

VDD

Figure 5.2: The internal structure of embedded flash memory. The bit-lines are labelled B0, ..., Bn−1, the word-lines
are W0, ..., Wk−1, and the switches controlling each block are Sb and Sg.

between high and low energy per iteration. This can be seen for 8-byte loops in the
STM32F0 and STM32F1, and the 10-byte loop in the PIC32 and MSP430F. The alignment to
a 4-byte boundary greatly affects the energy consumption in three of the platforms and has
a smaller effect on one other (PIC32). The effect occurs because the flash has 32 bit-lines,
and extra fetches from flash must be performed to support any type of unaligned accesses.
In the STM32F0 and STM32F1 SoCs, this is only seen on loops whose size is a multiple of 4
bytes — if the loop is not a multiple then the same number of 4-byte boundaries are crossed
whether the loop is aligned or not. An opposite effect is seen in the PIC32 and MSP430F,
due to differences in instruction prefetching when a branch occurs. The following diagram
shows how unaligned accesses can affect a loop whose size is a multiple of four.

0 4 8 12 16 20 24 28

Three crossings

Aligned loop

0 4 8 12 16 20 24 28

Four crossings

Unaligned loop

PhD Thesis James Pallister

Embedded flash memory 53

0 32 64 96 128 160 192 224 256

5

6

7

S
T

M
3
2
F

0C

A

C

0 32 64 96 128 160 192 224 256

6

7

8

S
T

M
3
2
F

1

A

C

6

7

8

A
T

M
E

G
A

3
2
8
P5 points of

higher energy

4 points of

higher energy

B D C

9

11

13

P
IC

3
2

CA

0 32 64 96 128 160 192 224 256

Loop offset, o, (bytes)

6

8

10

M
S

P
4
3
0
F

A B

0 32 64 96 128 160 192 224 256

Loop offset, o, (bytes)

30

35

40

M
S

P
4
3
0
F

R

E
n

er
gy

p
er

lo
op

it
er

at
io

n
(n

J
)

10-byte loop

8-byte loop
Figure 5.3: The effect on energy consumption of changing the loop offset in flash
memory.

When the loop (shown as a rectangle) is aligned fewer 4-byte boundaries are crossed. This
is in contrast with the following loop, when the loop’s size is not a multiple of four (here,
18 bytes instead of 16).

0 4 8 12 16 20 24 28

Four crossings

Aligned loop

0 4 8 12 16 20 24 28

Four crossings

Unaligned loop

Here, the number of 4-byte boundaries crossed does not depend on the loop alignment.
This phenomenon explains the zigzag pattern in energy consumption for these SoCs.

B Some of the processors have effects which modify the energy consumption based on the
16-byte alignment. This is mostly seen in the ATMEGA and MSP430F, where aligning to
the boundary reduces energy consumption. A similar mechanism to that of feature A is
responsible for this — the loop crosses a block boundary at certain alignments, causing
additional switching, and energy.

C A further large effect is seen when the loop straddles a page — page boundaries typically
occur every 128 or 256 bytes. This is often a significant effect, as changing a page can be a
large amount of circuitry to switch.

D Feature D illustrates the effect the size of the loop has on the increase in energy. As the
size of the loop increases, the number of alignments which can straddle a k-byte boundary
increases.

James Pallister PhD Thesis

54 Optimisations designed for energy consumption

No crossing Crossing Crossing Crossing No crossing

Four instructions, three alignments which straddle the boundary.

No crossing Crossing Crossing Crossing Crossing No crossing

Five instructions, Four alignments which straddle the boundary.

The diagram above shows that a loop with n instructions will have n− 1 alignments which
straddle a k-byte boundary, such as a 128-byte page (assuming n < k).

The graph for MSP430FR does not exhibit any of the features found in the other graphs,
because the SoC uses FRAM instead of flash. Other than the memory the SoC is identical to
MSP430F — the differences in the graphs are a direct result of using FRAM. FRAM (Ferroelectric
RAM) does not have the same architecture and can be accessed in a randomly, rather than
divided into pages and blocks as with flash. This leads to a flat energy profile.

The variety of features, and large differences between each SoC require a generic way to
model the phenomenon, rather than the individual construction of an energy model for each
SoC. Each SoC’s flash memory energy consumption can be estimated by assigning costs to each
2k-byte boundary and counting the accesses which transition this boundary. See the following
section for details of the model. The model can be used to optimise the energy consumption due
to executing instructions from embedded flash (covered in Section 5.3.2).

5.3.1. Energy model

This section describes a generic model which can be used to predict the energy consumption
when accessing embedded flash memory. The model focuses on memory-read energy, since
in deeply embedded systems the flash is rarely written, while reads are frequently performed
for instructions and constant data. The details of the structure of the embedded flash are rarely
revealed outside the manufacturer, meaning that a generic model must be able to handle many
differing flash architectures.

The model is based on the observation that when two memory accesses access different
2k-byte blocks there will be a circuit state change overhead, as different components are enabled
and disabled. For example, an overhead would be incurred when an access is performed in
block 0, then a subsequent access is performed in block 1 (see Figure 5.2).

An energy cost, Ek, can be assigned to the change of each 2k-byte region, starting at memory
location 0. For example, if an instruction i0 is at address i0 = 0 and instruction j0 is at address
j0 = 2, both a 1-byte boundary and a 2-byte boundary will have been crossed. The energy cost
for this transition can be represented by:

i0 → j0 = E0 + E1, (5.1)

where E0 and E1 are the costs of crossing a 1-byte and 2-byte boundaries respectively. Similarly,
if i1 = 2 and j1 = 4, the energy cost will be:

PhD Thesis James Pallister

Embedded flash memory 55

i1 → j1 = E0 + E1 + E2. (5.2)

The hypothesis that each 2k-byte region can be assigned an energy cost leads to the following
equations describing the total energy for a single address transition,

i→ j =
N(i,j)

∑
k=0

Ek , (5.3)

N(i, j) =
⌊

log2

(
i⊕ j

)⌋
. (5.4)

In the above equation, i→ j represents the consecutive memory access from address i to address
j. The term, N(i, j), represents the number of regions that have been crossed by that memory
access, i.e. the highest bit in the address that has changed. The ⊕ operator is the exclusive-or
operator.

Equation 5.3 can be composed into an expression containing all the sequential memory
accesses, giving the total memory energy consumption for that sequence of accesses, T =
T0, T1, ...Tn−1.

E(T) =
n−1

∑
i=0

(Ti → Ti+1) . (5.5)

In this equation, Ti is the address of the ith of n accesses to the flash memory. The total energy
consumption of the access sequence is given by E(T). This forms a generic model which can
estimate the energy given an arbitrary sequence of addresses accessed within the flash. When
executing instructions directly from flash, the sequence of accesses can typically be divided into
3 components (see Figure 5.4):

00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E

Branch instruction

Instruction
fetch

Instruction
prefetch

Data access

Branch
destination

Code layout

Memory access sequence

00 02 04 1C 06 08 0A 0C 0E 14

E0
E1

E0
E1
E2

E0
E1
E2
E3
E4

E0
E1
E2
E3
E4

E0
E1
E2
E3

E0
E1

E0
E1
E2

E0
E1

E0
E1
E2
E3
E4

Figure 5.4: An example code memory layout and the ordering of memory accesses it produces.

James Pallister PhD Thesis

56 Optimisations designed for energy consumption

Fetching the instructions. This can be determined statically within a basic block, since the
sequence of instructions is known. The sequence of accesses from instruction fetching, MI ,
can be calculated for a basic block, given as,

MI = A(0), ..., A(s− 1), (5.6)

where s is the number of instructions in the basic block and A(x) gives the address of the
xth instruction in the basic block. This equation captures each memory address accessed by
sequential transitions inside the basic block.

Implicit prefetching of instructions (typically following a branch instruction). In pipelined
processors, the memory fetch for the next instruction happens during the execution of the
current instruction (prefetching). However, if the instruction modifies the control flow
that memory access may have to be repeated with the correct address. The analysis of
which prefetches occur can be done statically for direct, unconditional branches, however,
data-dependent conditional branches can branch to two or more locations which may not
be known ahead of runtime. The sequence of memory accesses, MP, from instruction
prefetching is,

MP = P(0), ..., P(Np − 1), Bdest (5.7)
P(k) = Sinsn · k + A(s), (5.8)

where s and A(s) are as given above. P(k) gives the address of the kth prefetched instruction,
and Np is the total number of prefetches. Sinsn is the size of each instruction fetched, and
Bdest is the destination of the branch. These accesses can be appended to MI if the final
instruction is a branch, since the P(k) expression is the address of each access, k, after the
last instruction in the basic block, A(s).

• Data accesses by the instruction stream. If the processor executes a load from flash then
this memory access should be accounted for. This is especially problematic to do statically
if the processor has a unified address space and a load instruction could reference either
RAM or flash. The accesses to data can be included by inserting the data address (if in
flash) after the respective instruction fetch in the memory access sequence.

An illustration of the components is shown in Figure 5.4. The top part of the diagram shows
the layout of various instructions and the branches between them. The sequence below shows
the order in which memory locations are accessed, and the type of operation causing the memory
access. The coefficients of the model are below the memory access sequence. Summing these
coefficients gives the following cost:

9E0 + 9E1 + 6E2 + 4E3 + 3E4. (5.9)

Overall, Equation 5.5 can be used to estimate the amount of energy consumed by the embed-
ded flash memory. This model can be used for optimisation, or static energy determination in
conjunction with an instruction level energy model. The parameters for the model are empirically
determined for various chips in the model parameters section (Section 5.3.1).

PhD Thesis James Pallister

Embedded flash memory 57

SoC Model parameters (pJ)
E2 (A) E3 E4 (B) E5 E6 E7 (C) E8 (C) Np

STM32F0 300 27 6 0 9 100 6 2
STM32F1 500 0 6 34 4 10 190 2
ATMEGA 0 22 36 27 9 107 24 1
PIC32 225 0 10 18 8 13 113 1
MSP430F 408 0 34 26 15 13 13 1

Table 5.1: Model parameters for the different SoCs. The letters correspond to the features shown in Figure 5.3.
Parameters with high energy costs are highlighted. Np gives the amount of prefetching performed by the processor.

Static whole program estimation

The generic flash model given in Eq. 5.5 relies on a sequence of accesses to the memory which
can be difficult to obtain statically. This prevents the use of the model at compile time for
optimisation decisions (such as code placement). Components of the access pattern which cannot
be determined statically are the locations when loading data from flash and branch destinations.
These are addressed below, so that a static model of a program’s energy consumption can be
created.

The pattern of data locations can be simplified in the model by an observation that many
accesses to static data are known at compile-time. Thus, using data-flow analysis, the compiler
can often work out whether code is accessing read-only data (in flash) or volatile data (in RAM).
If the data access is in flash, then the data can either be stored in the code, in a constant pool, or
further away in its own data section. When the data is in a constant pool, it is typically accessed
by a static offset relative to the program counter, e.g. with ARM’s adr instruction. For data which
is potentially further away, an estimation of the distance can be fed into the model. As seen from
the parameters determined in the next section the largest energy coefficient is often caused by
the 256-byte boundary — if the data section can be reasoned to be further than 256 bytes from
the current instruction then the energy cost for that transition will be at least E0 + ... + E8, even if
it is much further than 256 bytes away.

An estimation of the energy cost for jumping to the branch destination can also be created. In
the majority of cases conditional branches are short-range with two possible destinations. These
can either be approximated by just using the common coefficients between the two destinations,
or using the compiler’s knowledge of the likelihood of the branch being taken to weight the
energy. For example, if the last address transition of the branching is 6→ 8 or 6→ 0, the possible
energy consumptions are:

6→ 0 = E0 + E1 + E2. (5.10)

6→ 8 = E0 + E1 + E2. + E3. (5.11)

The two expressions have common coefficients, where the first three terms of Equation 5.10
are also present in Equation 5.11. The average could be used as an approximation if no other
information about the branch destination was available. If branching probabilities are available
(possibly provided by the compiler, or profiling), the last coefficient (E3) can be scaled by the
likelihood that the destination is 8, rather than 0.

Other branches have unknown destinations, and cannot easily have their energy consumption
estimated. Return instructions can be estimated by using the call graph and enumerating likely
parent functions. Indirect branches could be completely freeform with any destination. In this
case, either a profile or more sophisticated static analysis is necessary to determine possible

James Pallister PhD Thesis

58 Optimisations designed for energy consumption

branch targets. These cases occur infrequently in embedded programs, and therefore will not
significantly increase the error of the energy prediction.

These points can be combined when there is information about the branch destinations into a
model for the entire flash memory energy of a program, P. The following equation is split into
two parts, summing the energy of the accesses inside each basic block, and summing the energy
of the branches between each basic block. Each part is scaled by the number of times either the
basic block is executed (Fb) or the number of times a block branches to another (F′i,j),

P = ∑
b∈B

E(Tb) · Fb + ∑
i,j∈B

E(T′i,j) · F′i,j, (5.12)

where E(X) gives the energy consumption of a stream of flash accesses, X, as in Equation 5.5. In
the first part, Tb gives the expected sequence of accesses, except for the branch destinations for
the basic block b, out of the set of all basic blocks in the program, B. The energy of these accesses
is scaled by the number of times the basic block is executed, Fb. In the second part, T′i,j is the
sequence of accesses caused by the branch at the end of block bi to the start of the block bj. The
energy is scaled by the number of times each edge is taken, F′i,j.

The stream of accesses is defined,

Tb =

MI︷ ︸︸ ︷
Ab(0), ..., Ab(s− 1),

MP︷ ︸︸ ︷
Pb(0), ..., Pb(Np − 1), (5.13)

where Ab(x) gives the address of the xth instruction in block b (with s instructions in it), and
Pb(x) gives the address of the xth prefetched location as per the model. These are formed from
the accesses from instruction fetch and instruction prefetching, MI and MP respectively. The
stream of accesses for the branching behaviour of the basic block is given,

T′i,j = Pi(Np − 1), Aj(0), (5.14)

where this is intuitively the last access performed by basic block bi and the first performed by
bj. For the example given in Figure 5.4, the data access is ignored (due to being difficult to
determine statically), and the accesses split between Tb and T′i,j,

Tb = 00, 02, 04, 06, 08, 0A, 0C, 0E (5.15)

T′i,j = 0E, 14. (5.16)

By formulating a static model of a program’s flash energy consumption, optimisations can
use this information to make positioning and alignment decisions requiring only information
that is already present in the compiler or at the assembly level, such as the control flow graph
and estimates (or profile) of execution counts for basic blocks and edges.

Estimating the model parameters

Linear regression was used to find the value of the parameters to the model for five SoCs. For
each SoC, a large number of tests were measured for loops with different sizes and alignments.
The set of alignments explored, Oloop, and the set of loop sizes used, Sloop are,

Oloop = {0, 2, 4, ..., 256} (5.17)

Sloop = {8, 10, 12, 14, 16}. (5.18)

PhD Thesis James Pallister

Embedded flash memory 59

1 b loop

2 .align 8 ; Align to 256 bytes

3 .fill o, 1, 0 ; o ∈ Oloop
4 loop:

5 .repr s/Sinsn - 2 ; s ∈ Sloop, Sinsn = Sinsn
6 nop

7 .endr

8 sub r0, #1

9 bne loop

Figure 5.5: Example test to exercise different sized loops, s ∈ Sloop, at different alignments, o ∈ Oloop.

SoCs NRMSD (%)

STM32F0 27.1
STM32F1 17.5
ATMEGA 5.6
PIC32 8.4
MSP430F 17.7

Mean 13.2

Table 5.2: Cross validation results for all
SoCs.

NRMSD (%) Features
Program STM32F0 ATMEGA Bu Bc BB

I 14.1 8.8 1 2 4
II† 19.3 6.1 1 2 3
III† 18.8 9.1 1 2 3
IV 14.3 5.7 2 3 5
V‡ 21.7 7.4 1 1 2
VI‡ 9.5 7.6 1 1 2

Mean 15.7 7.3 - - -

Table 5.3: Validation results using complex loops, with features:
Bu, number of unconditional branches, Bc, number of conditional
branches, and BB number of basic blocks.

†‡ Pairs of tests with the same structure, but different sized and aligned blocks.

All the instructions used in these tests were 2 bytes and the loop bodies were nops to minimise
the processor’s impact on the test results (see Figure 5.5). Using this set of tests allows the exact
access sequence to the flash memory to be found analytically (infrequent conditional branches,
no data access to flash), and enough tests to allow linear regression to correctly estimate the
parameter values.

The values of the parameters for each SoC are shown in Table 5.1, with large parameters
highlighted. In particular, the 4-byte boundary (parameter E2) is often associated with a large
energy cost, suggesting that these SoCs have embedded flash with 32 bit lines. This also
corresponds to the feature A in Figure 5.3.

The other highlighted parameters are the 128- and 256-byte boundaries (parameters E7 and
E8). These are likely the page sizes of the respective SoCs. Parameters E4 and E5 have large
values in two of the SoCs (ATMEGA and MSP430F) which correspond to feature B in Figure 5.3
and are caused by the block structure of the flash.

Model validation

Two forms of validation were performed on the model, cross validation and then testing on
unseen, more complex loops. Cross validation was used to validate the parameters of the model,
and repeated for all combinations of datasets for each SoC. The Normalised Root Mean Square
Deviation (NRMSD) metric is used to give an error percentage for the entire set of alignments.
The metric compares all corresponding points for a given loop size, and measures the total error
between two series. This gives a better indication of the error than an individual error, since

James Pallister PhD Thesis

60 Optimisations designed for energy consumption

optimisation decisions can still be made if the prediction is not absolutely correct, but correct
relative to the points before and after it.

The cross validation tested the model was sufficient by finding the model parameters with
|Sloop|−1 of the loop sizes, and using the final set of alignments to test the model. For example,
one cross validation test would find the parameters using Sloop = {8, 10, 12, 14}, and evaluate
the model on Sloop = {16}, ensuring that the data used to find the parameters was not used to
test the model. Table 5.2 gives the average NRMSD for each platform using each combination of
cross validation tests.

The error is very low for ATMEGA and PIC32, since the simple pipelines allow the exact
memory access sequences to be modelled easily. Thus, there are very few memory accesses
which are not accounted for by the model and the realised error is attributed to measurement
noise and effects the model does not capture. Two other SoCS, MSP430F and STM32F1 have a
slightly higher error, although the error is still low enough to make optimisation decisions. The
additional error is due to memory accesses which were not taken into account. For example the
STM32F1 uses an extra prefetch buffer which will affect the locations of flash memory accessed.
Note, this is different from the prefetching of instructions accounted for by the model. The
prefetch buffer in the STM32F1 attempts to fetch extra instructions, and to prevent stalls in the
pipeline, however, full implementation details are not available and cannot be added into the
model. The STM32F0 has the largest error, again due to a prefetching scheme which causes
unknown memory accesses — larger compared to the STM32F1 which has branch prediction
informing the prefetch buffer.

The ATMEGA and STM32F0 SoCs have the best and worst errors, respectively and further
extensive validation was performed on these SoCs. This was performed using more complex
loops with multiple basic blocks and branching. These loops, numbered I – VI, have conditional
branching as well as multiple basic blocks inside the loop. The number of conditional and
unconditional branches, and basic blocks are shown in Table 5.3. The features show a range
of control structures within the loop, representing the behaviour typical programs would
have. The exact control flow graphs of the complex loops can be seen in Figure 5.6. This
diagram shows the alignment and branching of each basic block in the loops. The error for the
ATMEGA is slightly higher than in the cross validation tests. This is due to the extra conditional
branches adding energy coefficients which are not accounted for (see previous Equations 5.10
and 5.11). The conditional branches cause the opposite effect in the STM32F0 — a lower error
is achieved. The high error seen in the cross validation tests is caused by the prefetch buffer
fetching additional memory locations. With more complex loops, these prefetched locations
correspond to subsequent instruction accesses which are captured in the model, hence lower
error is achieved.

Figure 5.7 shows a comparison between the predictions of the model and measured results
of the loop V. The STM32F0 graph shows that the model follows the trend of the measured
results, despite the comparatively high error. While the magnitude of the peaks and troughs is
not correctly predicted, the direction of change is correct, along with the significant increases
(such as at the end of a page). The prediction for ATMEGA is much closer to the actual energy
consumption, with the graph having a similar shape. The source of the error for this SoC is due
to the under estimation of energy near the 128-byte boundary.

5.3.2. Optimisation

An optimisation can be formed with the embedded flash energy model, using it to inform the
compiler about good positions in memory for code. The total flash energy consumption should
be lowered if frequently executed basic blocks are aligned in such a way that they minimise the

PhD Thesis James Pallister

Embedded flash memory 61

A
lig

nm
en

t

I II III IV V VI

Figure 5.6: The basic blocks structure and their alignments for the complex loop tests.

0

1

2

3

S
T

M
32

F
0

Model

Measured

0 32 64 96 128 160 192 224 256
Relative byte offset

0

1

2

3

A
T

M
E

G
A

32
8P

F
la

sh
en

er
gy

p
er

lo
op

it
er

at
io

n
(n

J
)

Figure 5.7: Comparison between the model predictions and measured results for STM32F0 and ATMEGA.

James Pallister PhD Thesis

62 Optimisations designed for energy consumption

number of expensive region crossings, as informed by the model. Three possible optimisations
of varying complexity are outlined below.

Loop alignment. Ensuring that important loops are properly aligned is a possible optimisation.
The optimisation would reduce energy consumption by understanding the structure of
embedded flash, without necessarily using the model explicitly. For many of the platforms
the greatest model parameter is for the 4-byte region (E2). The energy consumption caused
by this parameter can be reduced by ensuring loops are aligned to a 4-byte boundary. This
optimisation is often seen in modern compilers for performance reasons — 4 bytes is the
minimum alignment possible for many processors’ memories [70], and unaligned accesses
often have a performance penalty or are not supported. Alignments at higher boundaries
have not been previously considered, as there is often less or no performance (execution
time) benefit.

An energy saving transformation based on aligning loops to a particular alignment bound-
ary should consider the following items:

• Estimated minimum number of iterations of the loop. A trade-off must be made
between the cost and the benefit of aligning the loop. This trade-off will be affected by
the number of iterations for which the loop is executed.

• Size of the loop. The transformation should consider the size of the loop, because
large loops will have a lower relative decrease in energy consumption, compared to
smaller loops.

• Space wasted to align the loop. When aligning the loop to a k byte region, up to
k− 1 bytes may be wasted. The wasted space must be balanced against the benefit of
aligning the loop, since blindly aligning every loop to a large boundary could cause a
significant increase in code size. It is possible to minimise this by moving infrequently
executed basic blocks into the space before the loop.

• Loop entry distance. The performance and energy costs of branching into the loop
must be weighed against the cost of padding the offset with nops.

Basic block alignment. An alternative optimisation is to align each basic block to reduce the
number of transitions. The optimisation inserts an amount of space before certain basic
blocks, changing the alignment of that basic block (and subsequent basic blocks). This
optimisation is more complex than the previous optimisation, since there is the cascade
effect of the alignment affecting the following basic blocks. However, it has the potential to
be more effective than purely aligning loops, since it considers basic blocks individually
and still can align blocks inside of loops.

Basic block reordering. Just aligning basic blocks may not be able to fully reduce the energy
consumption, and possibly could increase the space required by a large amount. Allowing
full flexibility in the placement of a basic block, with arbitrary positions in memory, is the
most likely optimisation to reduce energy consumption, however, it is the most complex.
Constraints must be applied to the placement to ensure that two basic blocks do not overlap,
and that the branches at the end of each basic block have enough range to jump to their
targets. Additionally, some of the branches may have to be rewritten — if the fall through
target of a branch is moved, an additional branch must be insert which both increases the
energy consumption and execution time. This optimisation is not implemented due to its
complexity.

PhD Thesis James Pallister

Embedded flash memory 63

Benchmark O0 (%) O1 (%) O2 (%) O3 (%) Os (%)

2dfir 22.8 23.9 23.9 24.1 23.9
blowfish 16.0 16.5 18.5 18.6 17.5
crc32 18.2 18.9 19.0 18.1 18.3
cubic 21.9 21.7 21.8 21.8 21.8
dijkstra 14.1 17.7 17.4 17.8 16.8
fdct 14.1 19.4 18.5 18.3 18.7
matmult-float 22.7 23.6 23.8 23.7 23.2
matmult-int 18.6 19.8 17.3 17.0 20.1
rijndael 15.5 19.5 18.9 19.4 19.2
sha 19.0 19.0 18.7 18.9 18.7

Average 18.3 20.0 19.8 19.8 19.8

Table 5.4: The proportion of the program’s energy consumption which is taken by crossing flash boundaries.

Basic block 1 Basic block 2 Basic block 3

Alignment for block 2
Alignment for block 3

Figure 5.8: Alignment example of three basic blocks

The following sections explore these optimisation concepts, evaluating their potential impact
on the energy of the benchmarks in BEEBS. As an initial reference point, the static program
model (Equation 5.12) was applied to each benchmark’s trace at each of the main optimisation
levels. This gives a strict upper bound for the amount of energy that could be saved by these
optimisations. Achieving this bound is not possible, since the resultant program would be
required to perform zero changes in memory access, and thus all be stored in the same location.

Table 5.4 shows the absolute and relative best possible savings. These figures were gathered
from an instruction trace of each benchmark on the STM32F1 SoC, and applying the energy
model. A significant proportion of the overall energy consumption of the SoC is consumed
by address changes in the flash. While the energy consumption is large, it is likely that only a
fraction of it can be reduced due to unavoidable accesses.

Implementation and evaluation

The potential optimisations were implemented in various ways. The first optimisation was
implemented1 in GCC [41], however did not succeed in reducing energy on the ATMEGA. The
optimisation identified loops, and inserted padding before the loop so that it was aligned to a
larger boundary. The additional padding is formed of nops, and must be executed, negating any
energy savings that the loop alignment achieved.

The second possible optimisation using the model attempts to insert an amount of space
before each basic block aligning to a different boundary. Due to the non-linear nature of the
model, quickly finding an optimal set of alignments for all the basic blocks in the code is a

1Thanks to Jörn Rennecke of Embecosm for the implementation in GCC.

James Pallister PhD Thesis

64 Optimisations designed for energy consumption

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Padding space required (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
ed

u
ct

io
n

in
fl

as
h

m
em

or
y

en
er

gy
(%

)

O1 2dfir

O2 sha

O2 dijkstra

O3 matmult-int

Figure 5.9: Pareto frontiers of the energy and space trade-off for aligning basic blocks (STM32F1).

difficult task. Heuristics and iterative evaluation of the model can be used to guide the positions
of the basic blocks and devise an acceptable solution. Figure 5.8 shows three basic blocks, with
basic block 2 aligned to a 4-byte boundary so that it does not straddle this region and cause
additional energy consumption. By aligning the second basic block, this changes the alignment
of the third basic block such that it does not need additional alignment.

The optimisation was implemented as a post-compiler pass on the ATMEGA and STM32F1
SoCs. The basic blocks, along with their size and alignment were extracted. The static program
energy model (Equation 5.12) was encoded into SMT (Satisfiability Modulo Theories) constraints
with an offset parameter at the beginning of each basic block. The SMT solver could then
find a set of alignments, ob that minimised the energy consumption of the program, following
Algorithm 5.10. This algorithm iteratively decreases an energy value, e, and gives this as a
constraint to the solver, which returns a set of alignments that satisfies the constraints. The
energy value is decreased until the solver cannot find a solution. The process is repeated with
increasing amounts of total space available for alignment (omax), giving the Pareto frontier of
energy consumption and additional space required.

Examples of several of the Pareto frontiers generated are shown in Figure 5.9, for the STM32F1
SoC. The graph shows the percentage of possible savings (see Table 5.4) that can be saved by
realigning the basic blocks, with up to 32 bytes of extra padding. These savings are not large,
and likely to be lost in measurement noise if applied to the benchmarks.

The optimisation does not manage to save significant energy, due to the flash memory model
parameters — the largest region-crossing cost is the 4-byte boundary, which is difficult to reduce
by aligning the basic blocks. This can be demonstrated by looking at the number of times each
boundary is crossed for the unaligned (before) and aligned (after) benchmarks. The following
table shows number of transitions across each 2k-byte boundary for the matmult-int benchmark.

E2 = 500 E3 = 0 E4 = 6 E5 = 34 E6 = 4 E7 = 10 E8 = 190

O3 3,190,939 1,877,418 1,207,977 1,128,960 1,075,239 51,294 51,251
Realigned 3,201,378 1,882,564 1,234,736 180,542 53,862 51,291 51,221

∆Transitions 10,439 5,146 26,759 -948,418 -1,021,377 -3 -30
∆Energy (µJ) 5.2 0.0 0.2 -32.2 -4.1 0.0 0.0

Tr
an

si
ti

on
s

Increase Decrease

PhD Thesis James Pallister

Embedded flash memory 65

1 for omax = 0, 1, ... do
2 e = apply model to find base cost (no change in alignment);
3 repeat
4 Decrease e;
5 Solve for ob with the following constraints:

∑
b∈B

ob 6 omax The sum of the alignments of each basic block is below omax .

P < e The program’s energy consumption is below e.
6 until the solver returns unsat ;
7 Record the last found alignment values, along with their energy;
8 end

Figure 5.10: Algorithm to find the optimal basic block alignment by iteratively reduce the energy consumption.

The optimisation does not manage to reduce the number of transitions for the E2 parameters,
which has the highest cost (500 pJ per transition), instead increasing the amount of energy
consumed slightly. However, the solver negates this effect by reducing the number of transitions
across the 32-byte boundary, which has both a large cost and large number of transitions,
resulting in a small net decrease in energy.

When applied to the ATMEGA, different results are expected, since the SoC does not have a
large coefficient for the 4-byte boundary and hence the overall transition energy should be able
to be reduced more effectively. However, the saving achieved is also small for this platform. The
solver is more effective at reducing the flash memory energy, however, the fraction of energy
consumed by this particular SoC is much lower and therefore the savings are actually smaller.
The table below shows the changes in region-transitions for the dijkstra benchmark, on the
ATMEGA.

E2 = 0 E3 = 22 E4 = 36 E5 = 27 E6 = 9 E7 = 107 E8 = 24

Os 20,094,489 9,737,031 5,231,518 2,727,340 1,289,695 782,321 352,566
Realigned 13,769,163 7,702,510 3,630,434 1,760,276 912,483 583,525 210,656

∆Transitions -6,325,326 -2,034,521 -1,601,084 -967,064 -377,212 -198,796 -141,910
∆Energy (µJ) 0 -4.5 -5.8 -2.6 -0.3 -2.1 -0.3

Tr
an

si
ti

on
s

Decrease

As with the STM32F1, the majority of the transitions are across the lower boundaries. The
ATMEGA manages to significantly reduce the number of 4-byte transitions, even though this
does not decrease the energy. This is achieved because the AVR (ATMEGA) only prefetches one
instruction ahead (Np = 1), compared to the Cortex-M3 (STM32F1) prefetching two instructions
(Np = 2). The transitions across 8-, 16- and 32-byte boundaries also achieve significant reductions,
and do manage to reduce the energy consumption but only by a very small amount.

Conclusion

None of the optimisations managed to save a significant amount of energy for any of the
benchmarks, despite managing to align the basic blocks and minimise the amount of energy
as predicted by the model. In light of this, the maximum potential saving achievable for each
benchmark were computed (on STM32F1), shown in Table 5.5. These numbers were found
by eliminating all model parameters except E2, the crossing of a 4-byte boundary, and are

James Pallister PhD Thesis

66 Optimisations designed for energy consumption

Benchmark O0 (%) O1 (%) O2 (%) O3 (%) Os (%)

2dfir 1.4 1.5 1.5 1.5 1.4
blowfish 0.7 0.7 1.1 1.1 1.1
crc32 0.8 0.9 1.0 0.9 0.9
cubic 0.9 0.7 0.7 0.7 0.7
dijkstra 0.8 1.2 0.8 0.8 1.1
fdct 0.3 0.5 0.4 0.4 0.4
matmult-float 1.1 1.1 0.9 1.0 0.9
matmult-int 0.9 0.5 0.1 0.6 0.4
rijndael 0.4 0.8 0.6 0.6 0.7
sha 0.7 0.7 0.8 0.8 0.7

Average 0.8 0.9 0.8 0.8 0.8

Table 5.5: Available savings, assuming that the 4-byte boundary cost cannot be significantly minimised.

the percentage of energy attributable to other regions being crossed. The crossing of 4-byte
boundaries is the most frequent, due to consecutive instructions crossing it frequently and thus
is the most difficult to minimise.

This difficulty in minimising energy likely applies to the majority of the platforms tested,
since the E2 parameter is often large, and suggests that it will be impractical to optimise a SoC’s
flash memory energy if there are large model coefficients for small region crossings. Only for the
ATMEGA is the parameter small (0), but for this platform the overall energy that could be saved
by aligning code is low.

A further complication with the alignment methods is that additional code must be inserted
— this takes extra time and thus energy. With platforms that have low coefficients for the smaller
region crossings, such as the ATMEGA, the code can be aligned easier, however the average
amount of space that needs to be inserted is larger (larger boundaries to align to).

Currently these obstacles make the exploitation of this model difficult, particularly as the
amount of potential energy savings are low in many platforms and difficult to achieve reliably.

5.4. RAM Overlay

As mentioned in the previous section (Section 5.3) deeply embedded SoCs typically execute
their code directly from flash, while reserving the RAM for runtime data. However, in systems
with a unified address space, it is often possible to execute code from the RAM as well. This can
be beneficial, since flash typically consumes a large amount of energy when accessed — RAM is
usually much less power hungry.

This section discusses how code can be moved to RAM before execution, resulting in lower
total energy consumption. Figure 5.11 shows a comparison of the power dissipation for different
instructions, executing out of both RAM and flash. In all cases the execution of instructions
from flash takes more power than RAM, and in all cases except load from flash, the reduction is
significant (between 35% and 60% lower). In the last case, the power is reduced, but by very
little because the flash still needs to be accessed. Since both flash and RAM are single-cycle
access (with the execution time remaining constant), this could form the basis of an optimisation
that targets energy consumption via reducing the average power.

The lower power when executing from RAM suggests that significant energy would be saved
if the program code was moved into RAM. The savings are exemplified in code which executes
a memory copy out of flash or out of RAM. The energy consumption and execution time of the

PhD Thesis James Pallister

RAM Overlay 67

Store
to

RAM

Load fro
m

RAM Add
Nop

Branch

Load fro
m

flash

Type of instruction

0

2

4

6

8

10

12

14

16

P
ow

er
(m

W
)

Flash

RAM

0 20 40 60 80 100

Proportion of code (%)

0

20

40

60

80

100

P
ro

p
or

ti
on

of
to

ta
l

ex
ec

u
ti

on
cy

cl
es

(%
)

blowfish

matmult-int

rijndael

dijkstra

Figure 5.11: Power dissipation of STM32F1 with different
types of instructions executing out of flash or RAM.

Figure 5.12: The figures shows that only a small amount
of code is responsible for the majority of execution cycles
in a benchmark.

memory copy are measured:

Code location Total energy Total time

Flash 7.7 mJ 750 ms
RAM 5.8 mJ 880 ms

The energy consumption of the benchmark is reduced by 25%, whilst execution time is
increased by 17%. This increase in execution time is a result of contention on the RAM — both
instructions and data must now be fetched from RAM, and also affects the energy consumption.
In a benchmark which did not access RAM so frequently the energy consumption savings may
be larger than 25%.

The benchmark placed the entirety of the memory copy function in RAM. Deeply embedded
SoCs have much less RAM than flash, typically about eight times less RAM than flash, making
copying all of the sections of code impossible. Choosing a subset of the code to place into RAM
allows most of the potential energy savings to be achieved, while still remaining within the
limits of the spare RAM.

Only a very small number of basic blocks are executed frequently. The graph in Figure 5.12
demonstrates this phenomenon, plotting the proportion of code against the proportion of the
total execution cycles required by that code. In most programs just 10% of the code accounts
for 80–90% of the total execution cycles (as seen in Figure 5.12). This argument follows for
individual functions — placing an entire function into RAM would likely waste the majority
of space due to most of the code not being executed frequently. The developed optimisation
analyses each basic block in the application, and determine whether or not it should be moved
into RAM to save energy consumption, by exploiting the lower power nature of the RAM. It is
necessary to consider the code on a basic-block level, rather than on a per-function basic due to
the limited amounts of RAM.

5.4.1. Implementation

There are several challenges associated with moving individual basic blocks into RAM,
instead of residing in flash. These must be solved efficiently to make the optimisation viable. An

James Pallister PhD Thesis

68 Optimisations designed for energy consumption

example application of the optimisation is given in Figure 5.13.

Distance between address spaces. In many embedded systems, the flash and RAM address
spaces are distinct and numerically far away from each other. For example, in the
STM32 SoCs, the flash is typically located at 0x08000000, whereas the RAM is located
at 0x20000000.

It becomes a problem to jump between the two when relative branches are used (the most
prevalent type of branch in embedded code) since there is typically a limited branch range.
To jump from 0x08000000 to 0x20000000, the size of the relative destination field in the
branch instruction must be at least 29 bits. Very few embedded instruction sets can do this,
therefore all the relative branches must be transformed into absolute branches or indirect
branches.

Instrumenting the basic blocks. The branches in the basic block must be rewritten. Additional
code may also need to be added, because if a branch is conditional, the execution can ‘fall
through’ into the following code. A branch to the next basic block must be inserted, if the
following basic block is not in the same memory.

Rewriting relative references. Some instructions in the basic blocks contain relative references
to data or code. In the case of data, the references must be rewritten to point to the data in
flash, or have the data copied into RAM as well. References to code are typically relative
function calls, which must be rewritten to use absolute function calls. References to data

int fn(int k)

{

int i, x;

x = 1;

for(i = 0;

i < 64; ++i)

{

x *= k;

}

if(x > 255)

x = 255;

return x;

}

.

Source

init

loop

if

iftrue

return

(a) Example code.

init:

mov r0, #0

mov r1, #1

loop:

mul r1, r1, r2

add r0, r0, #1

cmp r0, #64

bne loop

if:

cmp r1, #255

ble return

iftrue:

mov r0, #255

return:

mov r0, r1

bx lr

Flash

(b) Control flow graph
produced from the code.

init:

mov r0, #0

mov r1, #1

ldr pc, =loop

loop:

mul r1, r1, r2

add r0, r0, #1

cmp r0, #64

it ne

ldrne r5, =loop

ldreq r5, =if

bx r5

if:

cmp r1, #255

ble return

iftrue:

mov r0, #255

return:

mov r0, r1

bx lr

Flash RAM

A long range branch is
needed to jump between
memories.

An additional basic
block is created to
return to the flash
memory space.

(c) Optimised control flow graph with code in RAM.

Figure 5.13: An example of how the loop inside a function could be moved into RAM in the STM32F1 SoC.

PhD Thesis James Pallister

RAM Overlay 69

usually use constant pools. The constant pools can be copied along with the code, and the
references updated.

Figure 5.13 gives an example of how only the necessary basic blocks would be placed into
RAM, and called directly from flash. The jumps between memories incur additional time, space
and energy costs, which must be outweighed by the benefit of placing the basic block into RAM.
The trade-off can be made by modelling these constraints, then finding the set of basic blocks
which should be in RAM to minimise the overall energy consumption.

For the STM32F1, the optimisation is implemented as a post-compiler pass, modifying the
section that a basic block appears in. If the basic block should be in the RAM, it is placed into a
section which is loaded into the RAM at startup, at the same time as volatile data. The branches
at the end of the instrumented region are rewritten to load the address of the target basic block
into a register and jump to it. The rest of this section focuses on STM32F1, however, the method
is transferable to other SoCs with minimal modifications.

The exact transformations depend on the branch at the end of the basic block. The most
simple case is an unconditional branch to the next basic block. The branch gets transformed into
an indirect load of the next block’s location, as seen below.

b label

label:

...

3 cycles
2 bytes ldr pc, =label

label:

...

4 cycles
6 bytesInstrumentation

A similar transformation is applied when the basic block ends, but there is no branch (i.e. a
fallthrough into the next piece of code). The transformation simply adds a new branch at the
end of the block.

...

label:

...

0 cycles
0 bytes ldr pc, =label

label:

...

4 cycles
6 bytesInstrumentation

The transformations for conditional branches are more complex, since they require loading differ-
ent addresses based on the condition. This is achieved using the it instruction to conditionally
load the address of the next instruction in a register and branch to that register.

James Pallister PhD Thesis

70 Optimisations designed for energy consumption

bne label

label: label2:

... ...

3 cycles
2 bytes

it ne

ldrne r5, =label

ldreq r5, =label2

bx r5

label: label2:

... ...

7 cycles
16 bytesInstrumentation

The final type of branch combines the compare and conditional branch into a single instruction.
To instrument this instruction it must be split into separate instructions so that the addresses of
the basic blocks can be loaded.

cbnz r0,label

label: label2:

... ...

3 cycles
2 bytes

cmp r0, #0

it ne

ldrne r5, =label

ldreq r5, =label2

bx r5

label: label2:

... ...

8 cycles
18 bytes
1 extra registerInstrumentation

Overall these transformations allow a basic block with any kind of branch at the end to jump
to a basic block in a different memory space, for varying costs in terms of cycle count and space.
These transformations require the use of a temporary register to enable the branching behaviour.
This was achieved in the implementation by preventing GCC from allocating a specific register
with the -ffixed-r5 flag. This has a minor impact on the performance of the code (a maximum
of 4.7% increase in energy) however, in a fully integrated version of the optimisation the register
could be chosen based on which registers are unused to avoid the penalty. Despite this 4.7%
additional cost, energy savings of up to 26% are still achieved.

5.4.2. Program energy model

The energy consumption of the entire program can be modelled at a high-level, considering
the energy of the memory that code is executing from, along with the overheads of placing that
code in the particular memory. For an accurate estimation of the energy consumption, input
data values to the program would need to be known. However, an estimation of the number of
times a section of code is expected to execute provides similar results to having full information
(see Section 5.4.3).

Model parameters

There are several parameters to describe each basic block, the connectivity between basic blocks
and constraints specified by the developer (such as the maximum amount of code that can be
moved into RAM). All of the parameters can be derived or estimated statically from the code or

PhD Thesis James Pallister

RAM Overlay 71

the CFG, and are listed on the current page.

Sb The size (bytes) of the basic block, b, as compiled into flash.

Cb An estimate of the number of cycles taken to execute the basic block. Often this is
an estimate due to pipeline complexities, and fetch times being dependent on code
alignment. Additionally, this includes the number of cycles for any branch at the
end of the basic block, which may be different based on the direction taken.

Fb The number of times the basic block is executed. An accurate number can be
assigned to this parameter if the application is profiled. Otherwise, a simple estimate
can be used to guide the optimisation.

Succ(b) A set of basic blocks which are the immediate successors to the block, b.

D
er

iv
ed

ba
si

c
bl

oc
k

pa
ra

m
et

er
s

Kb The space overhead when instrumenting a basic block to jump between memories
(in bytes). This is both the extra instructions added, plus any data that those
instructions require (such as the address of the next basic block).

Tb The time overhead when instrumenting a basic block to jump between memories
(in cycles).In

st
ru

m
en

ta
ti

on
ov

er
he

ad
s

Lb The time overhead when executing from RAM. Additional cycles may be required
if a basic block is in RAM, due to contention on the memory bus.R

A
M

ov
er

-
he

ad
s

There are other parameters which are general inputs to the model, rather than derived from the
code. These parameters are either specific to the target SoC (found by characterising the specific
chip) or specified by the developer.

E f lash The energy cost of executing an instruction out of flash. This coefficient repre-
sents the average energy consumption of an instruction executing out of flash (see
Figure 5.11).

ERAM The average energy of an instruction which is executed out of RAM.

H
ar

dw
ar

e
pa

ra
m

et
er

s

Rspace This parameter is the maximum amount of RAM (in bytes) that can be used for
code. In cases where there is a limited amount of RAM, this constraint will have to
be applied to ensure that everything fits into the RAM. Sometimes the amount of
RAM can be determined statically, using heap and stack analysis [130].

Xlimit Some applications may have performance constraints. The maximum overhead
allowed in the solution is constrained by this parameter — setting Xlimit = 1.1 allows
a 10% overhead in the number of cycles.

D
ev

el
op

er
sp

ec
ifi

ed

All of these parameters can be determined statically for the majority of deeply embedded
platforms. The number of cycles per basic block, Cb, and iteration count of each basic block, Fb,
are the only parameters which are sometimes challenging. In the majority of platforms, the cycle
count is static and can be determined before runtime. The iteration count is more difficult since
it can vary largely depending on the data an application is working on. However, the iteration
count needs only to influence which basic blocks are likely to be hot and an estimate frequently
works well — see page 74 for a discussion of estimating the number of times a basic block is
executed, and the results section (Section 5.4.3) for its efficacy.

James Pallister PhD Thesis

72 Optimisations designed for energy consumption

Basic block

Size Sb
Time Cb
Frequency Fb

Basic block (RAM)

Extra time Lb

Instrumentation

Size Kb
Time Tb

Successors Succ(b)

Figure 5.14: Parameters characterising each basic block.

Energy model

The energy consumption of a program can be estimated by forming a cost model. This cost
model accounts for the number of cycles the processor spends executing out of RAM or flash,
based on which basic blocks are placed in which memory, along with various other parameters
describing the execution. Then, the sum of basic block energies can be minimised, by allowing
an ILP (Integer Linear Programming) solver to select which basic blocks should be moved into
RAM. Overall the problem is defined as the minimisation of the total energy of all basic blocks,
by finding a set, R (used below), of basic blocks which are in RAM:

minimise: ∑
b∈B

E(b). (5.19)

The following equation defines E(b), the energy of a basic block, b,

E(b) = (Cb + Oc(b) + Or(b)) ·M(b) · Fb, (5.20)

where Cb is the estimated number of cycles taken to execute b, Oc(b) is the overhead (in cycles),
if present, from instrumenting the basic block with long range branches. The parameter Or(b) is
a contention overhead, causing the basic block to take additional cycles when executing out of
RAM. M(b) returns the memory energy coefficient for the basic block and Fb is the execution
frequency (iteration count) of the basic block. The memory energy coefficient, M(b), gives the
power per cycle when executing b,

M(b) =
{

Eram b ∈ R
E f lash b /∈ R, (5.21)

where Eram and E f lash are the RAM and flash energy costs respectively, and R is the set of basic
blocks that are in RAM.

The cycle overhead of instrumenting a basic block is determined by considering the set of
instrumented basic blocks, I,

Oc(b) =
{

Tb b ∈ I
0 b /∈ I, (5.22)

PhD Thesis James Pallister

RAM Overlay 73

where Tb is the cycle overhead for instrumenting basic block b, and I is the set of instrumented
basic blocks. This set is constructed by considering where the successors of b are, in relation to b.
The block only needs to be instrumented if one of its successors is in a different memory to itself.

b /∈ I if b ∈ R and ∀(s ∈ Succ(b)) : s ∈ R
b /∈ I if b /∈ R and ∀(s ∈ Succ(b)) : s /∈ R
b ∈ I otherwise,

(5.23)

where Succ(b) returns the set of basic blocks that are immediate successors to b. This information
is statically extracted from the control flow graph.

The RAM contention overhead parameter Or(b) is defined,

Or(b) =
{

Lb b ∈ R
0 b /∈ R, (5.24)

where Lb is the cycle overhead of placing a basic block in RAM. This stems from the problem that
when instructions are executing from RAM and a load instruction is encountered, additional
stall cycles may occur due to contention in accessing the RAM.

Constraints

Additional constraints need to be inserted into the ILP model to ensure that the resulting set of
basic blocks is valid. This ensures that the total size of the code placed into RAM does not exceed
available limits. The amount of code that can be placed into RAM is heavily dependent on the
program. Some of the time static analysis can estimate the amount of free RAM, by considering
the amount of variable storage and stack usage. However, in the case of complex heap usage,
or dynamic stack usage it can be difficult to statically analyse, and therefore this parameter
becomes a design point, needing to be specified by the developer (similar to stack and heap
size).

Using Rspare as the amount of spare RAM that can be used for code, the following constraint
ensures the generated solutions fit into the RAM,

∑
b∈R

(Sb + Os(b)) ≤ Rspare, (5.25)

where Sb is the size of the basic block (in bytes), and Os(b) is the space overhead for when a basic
block is instrumented, and in RAM. Similar to the Eq. 5.22, the size overhead of instrumentation
is,

Os(b) =
{

Kb b ∈ I
0 b /∈ I, (5.26)

where Kb is the overhead cost in bytes to instrument the basic block.
An execution time constraint can also be formulated, allowing the execution time overhead

to be restricted,

∑
b∈B

(
(Cb + Oc(b) + Or(b)) · Fb

)
≤ Xlimit · ∑

b∈B
(Cb · Fb), (5.27)

where Xlimit is the maximum factor the execution time can increase by. For example, if Xlimit = 1.2,
the solver allows the execution time to increase by up to 20%.

To be effectively minimised the constraints must be translated into inequalities, then solved
by an Integer Linear Programming solver, such as GLPK [131].

James Pallister PhD Thesis

74 Optimisations designed for energy consumption

Iteration estimation

A separate framework of constraints is used to make a crude estimate of the number of times
each basic block is executed. The estimation requires information about the call graph of the
program, the CFG, and the loops in the program, then returns an execution count for each basic
block in the program.

A simple heuristic for the number of executions of a block is counting the absolute ‘loop
depth’ of a block, db. This is found by performing a depth-first search on the call graph and
CFG, counting the maximum number of loops the block appears under. For example, in the
code snippet below, the statement global += i; is inside both the loop in function2 and the
loop inside function1, so has a depth, db = 2.

int function1()

{

for(int i = 0; i < 10; ++i)

function2();

}

int function2()

{

for(int i = 0; i < 10; ++i)

global += i;

}

The computed depth can be used with a loop trip count estimate, I, for an approximate
number of executions of each block,

Fb ≈ Idb , (5.28)

for any b ∈ B. The estimation is simple, but provides enough of a heuristic to weight basic block
frequencies for use in the model in some cases. However, the heuristic does not consider the
control flow graph, and does not necessarily weight blocks inside the loop correctly. A more
accurate estimation can be made by assigning this heuristic to just the loop headers, and then
attempting to derive other block’s iteration count based on the control flow. The estimation
asserts that the sum of the edges entering the header block of the loop should be equal to the
sum of the edges leaving the block,

Ein
bi

= ∑
bi∈Succ(bj)

Ej,i (5.29)

Eout
bi

= ∑
bj∈Succ(bi)

Ei,j, (5.30)

where bi , bj ∈ B, and Ei,j represents the branch frequency from bi to bj. Ein
b and Eout

b represent
the total of the edge frequencies entering and leaving block, b, respectively. While Ein

b and Eout
b

should be equal, these are calculated separately because Ein
b or Eout

b should not be asserted if
the block has no predecessors or successors, respectively. This case occurs in the first block of a
function and blocks where the function returns,

Fb = Ein
b iff. b has a predecessor (5.31)

Fb = Eout
b iff. b has a successor. (5.32)

Finally, if the block is the header of a loop, the block iteration count, Fb, is at least equal to the
previously mentioned simple heuristic,

Fb > Idb iff. b is a loop header node, (5.33)

PhD Thesis James Pallister

RAM Overlay 75

2d
fir

bl
ow

fis
h

cr
c3

2
cu

bi
c

di
jk

st
ra

fd
ct

m
at

m
ul

t-fl
oa

t

m
at

m
ul

t-i
nt

rij
nd

ae
l

sh
a

A
ve

ra
ge

Benchmark

−30

−20

−10

0

10

20

30

40

50

%
ch

an
ge

Figure 5.15: Results for applying the RAM overlay optimisation to BEEBS.
Energy
Time
Estimated Fb

O2 Os

where db is a value calculated on the absolute loop depth of the block in the program.
These constraints are given to an ILP solver, which returns the estimate of basic block

frequency. In some cases, the control flow graph results in a problem for which a canonical loop
structure cannot be found. In these cases the irreducible control flow is ignored and the simple
heuristic based on loop depth (mentioned earlier) is used.

5.4.3. Results

The optimisation was evaluated on BEEBS at several different optimisation levels. These
results are shown in Figure 5.15. Overall, the optimisation manages to reduce energy by an
average of almost 10%, while increasing the execution time by 20%. Some benchmarks, such
as dijkstra, fdct and matmult-int had significant reductions in energy consumption — up to 26%.
Other benchmarks do not see the same benefit, with little reduction in energy consumption.
Most of the difficulty in optimising these benchmarks is a result of the implementation of the
optimisation. Many hot functions used in these benchmarks are library functions which are
only available at link time and not to the compiler. In particular, the floating-point support
for the STM32F1 is emulated with library calls by the compiler. This code is typically called
very frequently and ideally would be placed into RAM for lower energy consumption. Fully
integrating the optimisation into the linker would allow visibility of these functions.

The graph also compares the results obtained by using the exact iteration count of a basic
block against to the static estimate, shown as the symbol, , on the graph. This indicates that
similar solutions are picked the majority of time, even if the exact iteration count of the basic
block is not known. In very few cases (rijndael) a slightly worse solution is picked (less than 1%
worse), likely due to small inaccuracies in the model.

While the solution that is chosen by the solver is effective, and optimal in terms of the model,
it may not be the global minimum for the energy consumption. To explore how good the chosen
solution is in absolute terms, an exhaustive search of all possible configurations was carried out
for two of the benchmarks. The results of this exploration are shown in Figures 5.16a and 5.16b,
where each point is a possible combination of basic blocks in RAM or flash. The points are
coloured by their usage of RAM, and the solutions selected by the solver are the lines on top of
the points.

Both graphs have the majority of the points clustered around several regions, rather than

James Pallister PhD Thesis

76 Optimisations designed for energy consumption

9 10 11 12 13 14 15 16 17 18

Energy (mJ)

0.8

1.0

1.2

1.4

1.6

T
im

e
(s

)

All blocks in flash

No RAM or
time constraint

Bounding RAM

Bounding time

Exhaustive combinations
of blocks in RAM

0
40

80
12

0
16

0
20

0
24

0
28

0

A
m

ou
n
t

of
R

A
M

u
sa

ge
(b

y
te

s)

(a) matmult-int

13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5

Energy (mJ)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
im

e
(s

)

All blocks in flash

No RAM or
time constraint

Bounding RAM

Bounding time

Exhaustive combinations
of blocks in RAM

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

A
m

ou
n
t

of
R

A
M

u
sa

ge
(b

y
te

s)

(b) fdct

Figure 5.16: A plot of the execution time and energy consumption for all combinations of basic blocks in RAM for two
benchmarks. The lines indicate solutions chosen by the solver as either the execution time overhead (Xlimit increased)
or the spare RAM bounds are relaxed (Rspare increased).

PhD Thesis James Pallister

RAM Overlay 77

SoC Align Overlay Comments

STM32F0 ! X The large 4-byte model coefficient suggests that the alignment opti-
misation may not be beneficial.

STM32F1 ! X The large 4-byte model coefficient suggests that the alignment opti-
misation may not be beneficial.

ATMEGA X × Small coefficients for the small boundaries suggests a similar opti-
misation may be beneficial. Separate program memory from data
memory.

XMEGA ? × Unknown whether the alignment optimisation can be applied (re-
quires profiling of the system). Separate program memory from data
memory.

PIC32 X X Medium 4-byte coefficient but also large coefficients for the higher
boundaries. Unified memory address space.

MSP430F X X Medium 4-byte coefficient but also large coefficients for the higher
boundaries. Unified memory address space.

MSP430FR × ? Flat energy profile for FRAM means alignment has little effect. Cur-
rently unknown whether FRAM is significantly lower power than
RAM.

AM335x × × Does not execute directly out of flash.
Epiphany × × Does not execute directly out of flash.
XMOS × × Does not execute directly out of flash.

Table 5.6: Applicability of the energy optimisations to each SoC. Align is the code
alignment in flash, and overlay is the RAM overlay optimisation.

Key Applicable

X Yes
! Possibly
× No
? Unknown

uniformly spread across the plane. The clusters form due to particular basic blocks having a
large influence on the solution. In the fdct case (Figure 5.16b), there are two similarly-sized large
basic blocks which are executed frequently. Placing both in RAM gives the most energy efficient
solution, the top left cluster. Placing either block in RAM results in the central clusters with a
moderate increase in time and decrease in energy, and placing neither of the blocks in RAM
forms the points in the bottom-right cluster. The same situation occurs for matmult-int — there
are three important basic blocks, and eight clusters present in the graph (the lowest cluster is
actually two overlapping).

On this graph, the optimal solutions for a combination of time and energy are the Pareto
frontier — the points on the bottom-left edge of the graph. The solutions are close to these
optimal solutions in most cases, and more importantly the solutions which are significantly
worse in either energy consumption or execution time are avoided.

A near optimal solution is found, but the optimal is not because of simplifications in the
model. In particular, the model assumes that none of the load instructions access flash memory
which does not hold true for some code structures. Items such as constant data and initial values
are often held in flash and will trigger higher energy consumption if blocks accessing these are
placed in RAM.

Overall the optimisation is effective at saving energy (an average of 10%, up to 26% lower
energy), with some limitations from the implementation — if fully integrated into the compiler,
many of the benchmarks which did not have significant energy savings may have larger energy
reductions.

James Pallister PhD Thesis

78 Optimisations designed for energy consumption

5.5. Conclusion

This chapter developed two new energy optimisations, whose structure is fundamentally
different from optimisations for performance. The optimisations exploit fundamental charac-
teristics of how the hardware works — the layout of the flash memory and the energy efficient
RAM memory — as well as taking account of the trade-off with longer execution time. Table 5.6
lists the applicability of the optimisations to each SoC used in this thesis, along with reasons
why it is or is not applicable. Neither of the optimisations are suitable for the more powerful
AM335x or Epiphany, neither of which use flash memory. Also, the XMOS device is not suitable,
since at start-up the contents of an external flash chip are copied into RAM.

5.5.1. Code alignment

The first optimisation — aligning code based on a model of embedded flash — results in a
small amount of energy saving in simulation, but the savings are very small when measured on
the actual hardware. The model assigned energy values to each 2k-byte boundary crossed by
a sequence of flash accesses. The exact model parameters for the majority of SoCs mean that
reducing the energy caused by embedded flash is often impossible. In particular, the transition
cost associated with the 4-byte boundary is often high. The 4-byte boundary occurs because
the flash is laid out into rows of 32 bit-lines, and accesses straddling the boundary will incur
a large switching overhead. Crossing of the smaller boundaries occurs most frequently in the
benchmarks — the majority of code executes sequentially without branching, and even when it
does branch, the majority are local, crossing only small distances. These facts make it challenging
to reduce the number of 4-byte transitions.

The total flash energy consumption for each benchmark is a large portion of the overall
energy consumption — 19.5% of the STM32F1’s energy consumption is attributable to address
boundaries being crossed in the flash memory. In this case, the majority is caused by the 4-byte
alignment parameter, accounting for 18.7% of the total energy consumption (i.e only 0.8% is
caused by the other model parameters).

The optimisation may be more effective when the weighting of the parameters is skewed
towards the higher boundaries. The ATMEGA SoC has model parameters which are low for
the smaller boundaries, and high for the larger boundaries, such as changing a page. This
allowed the optimisation to minimise the energy more effectively, however, the coefficients for
this platform were still small overall, so only low amounts of energy could be saved. For this
SoC, the cause of the energy consumption is more evenly distributed between its parameters.
Due to the large number of SoCs using embedded flash and the large number of technology
nodes, it is likely that there are many SoCs with a parameter profile suitable to this kind of
optimisation.

It is possible that a completely different optimisation utilising the developed model could
save energy. One such possibility is the reordering of basic blocks, rather than just a realignment.
Reordering basic blocks allows much more flexibility in the selection of which boundaries a basic
block crosses. Further opportunities for optimisation are possible, including splitting up basic
blocks and rewriting code to change how it traverses memory and to thereby reduce energy
consumption.

5.5.2. RAM overlay

The second optimisation developed exploited the difference in energy consumption between
code executing out of flash, and out of RAM. On the STM32F1, code executing directly from

PhD Thesis James Pallister

Conclusion 79

RAM consumes 35%–60% less energy, depending on the types of instructions executed. An
optimisation can exploit these characteristics by placing the code to be executed into RAM,
however, only a portion of the code can be moved to RAM — the flash memory is an order of
magnitude bigger than RAM, plus the RAM is used for the stack and data as well.

The RAM overlay optimisation created a model of the whole program’s energy consumption,
based on the number of cycles spent executing out of either flash or RAM. The model can be
minimised using integer linear programming, specifying which basic blocks should be moved
into RAM to get minimal energy consumption, while keeping the amount of necessary space
low and balancing the overheads of executing out of RAM. Overall, the energy consumption
was reduced by up to 26% for some benchmarks, at the expense of also increasing execution
time by up to 45%.

The increase in execution time was a result of the extra branching required to jump between
the two memories, and extra latency incurred when executing out of RAM (contention between
instruction fetch and load instructions). The first overhead could be eliminated by altering the
memory map of the SoC, allowing the shorter range branch instructions to be used. The second
overhead could be removed by adding an additional read port to the RAM, however, this may
reduce the energy saving if it increases the power dissipation of the RAM.

The RAM overlay optimisation was evaluated on just the STM32F1 SoC, but can be applied to
any deeply embedded SoC with flash that also has a unified address space. The Cortex-M series,
MIPS and MSP430 processors all have a unified address space and often execute directly from
flash; these processors would benefit from this energy optimisation. In particular the MSP430
has the address space of its RAM close to the flash, so could be implemented with low overhead.

5.5.3. Energy effect and research questions

Traditional instruction-level energy models would not have captured these effects, since the
attributable energy consumption is orthogonal to the computational energy costs. Thus, both of
the models found in this chapter could could be used in conjunction with an instruction-level
energy model to enable better whole system modelling. The models can be used to further
develop new optimisations which can target energy minimisation.

The research questions posed in Chapter 2 asked whether a class of optimisations exists
which lower energy consumption by lowering average power (an optimisation’s effect on kP, the
scaling of power), rather than decreasing the execution time (the effect on kT , time scaling). Both
optimisations attempt this, with the RAM overlay being most successful. As an example, the
best result for this optimisation is when it is applied to matmult-int, at the O2 optimisation level,
resulting in an energy reduction of 26%, even in the presence of a 24% execution time increase.
This translates to the optimisation having kT = 1.24, and kP = 0.59 — a significant reduction in
the average power dissipation of the SoC and as mentioned previously, these factors result in an
energy reduction since,

kT · kP < 1 (5.34)
1.25 · 0.59 < 1 (5.35)

0.74 < 1. (5.36)

The optimisation being able to reduce significant amounts of energy by reducing the kP
coefficient suggests that this optimisation belongs to a class of optimisations which can lower
the energy consumption in this way. Both of the optimisations in this chapter differ significantly
from typical execution time optimisations — both are applied to the whole program at the end of
compilation, and consider where the source of the instruction is rather than what computation

James Pallister PhD Thesis

80 Optimisations designed for energy consumption

they perform. In this case, the optimisations consider the code alignment, and which memory in
which the instructions are stored.

The approach used in this chapter to generate new optimisations for energy can be repeated.
In general the approach is as follows:

1. Identify unusual energy behaviour through empirical testing and examination of the target
SoC. The features identified could be low-level activity, such as transistor switching activity,
or the operation of specific functional units. For example, identifying that absolute address
alignment impacts energy consumption when executing directly from flash.

2. Construct a model which allows this behaviour to be investigated from a higher level. The
model relates some aspect of program execution to its energy behaviour. For example, the
embedded flash energy model relates an instruction stream to the sequence of memory
accesses, and that sequence of memory accesses to an energy consumption figure.

3. Use the model in the compiler. The model can be used to construct an optimisation by
informing decisions about when and where it is most beneficial to make code modifications.
This part is dependent on the exact characteristics being modelled. For example, the
embedded flash model can be used to predict how a basic block should be aligned to
minimise its flash energy consumption.

The procedure should be applicable across a variety of processors and to illustrate this a
hypothetical application of this procedure follows. If a processor has a Direct Memory Access
(DMA) controller, there may be cases when it is beneficial (for energy) to use this as opposed
to typical memory copies. The first step of the procedure would analyse the DMA’s energy
behaviour and determine under what conditions the DMA performed favourably. A model
could then be constructed, e.g. using the total amount of memory to be copied. Finally, an
optimisation utilising the model may identify regions of code where it is beneficial to use the
DMA instead of traditional instructions, such as stack initialisation, memory copies, and function
epilogues and prologues.

Overall, this chapter has followed this methodology for two identified energy characteristics,
developing models and then optimisations. The optimisation for reducing embedded flash en-
ergy was ineffective, however, there are still potential reductions for more complex optimisations.
The RAM overlay optimisation managed to significantly reduce the energy consumption, purely
by reducing the average power during execution, showing that compiler-based optimisations
that are designed for energy can have a significant effect on energy consumption.

PhD Thesis James Pallister

Chapter 6.
Combining optimisations

Optimisations often have significant and complex interactions, which are difficult to model.
Therefore, empirical testing of combinations of optimisations is necessary to identify where the
interactions occur. This is even more important with optimisations for energy consumption,
which may rely on subtle and fragile behaviours in the target platform. One example of this
is the alignment optimisation seen in the previous chapter — an optimisation applied after
aligning a code fragment may have a chaotic effect, causing the code to be misaligned, and have
higher energy consumption.

The interactions between energy optimisations and execution-time optimisations have not
been explored previously — it may be challenging to ascertain the effectiveness of an energy
optimisation when used in conjunction with other optimisations. This chapter attempts to
answer research questions about the combinations of energy optimisations and execution time
optimisations. In particular it is important to know whether there are significant interactions
between them. If there are interactions, it may not be possible to simply enable energy optimisa-
tions on top of the best optimisation level a compiler offers — a new set of optimisations may
have to be found. To explore the these interactions, the RAM overlay optimisation developed in
the previous chapter is used.

Firstly, the efficacy of individual optimisations for time is compared by reusing the fractional
factorial design technique, finding optimisations whose effectiveness increases or decreases
when used in combination with the energy optimisation. Then, the best optimisation sets, as
found by a genetic algorithm are tested with the energy optimisations — testing whether the
energy optimisation could be simply enabled on top of existing optimisations. Finally, the
genetic algorithm is rerun, allowing it to select whether to apply the RAM overlay optimisation,
as well as the execution time optimisations. This explores whether possible interactions could
enable even lower energy consumption.

6.1. Fractional factorial design

Section 4.4.1 of Chapter 4 explored the existing optimisations in the compiler using a fractional
factorial design design methodology. This is repeated here, except with the RAM overlay
optimisations applied as well as the existing compiler optimisations. The reader is referred back
to Section 4.4.1 for an explanation of fractional factorial design.

By rerunning the same design with the RAM overlay optimisation applied, the interactions
between the existing optimisations for execution time and the new energy optimisation can
be found. This allows optimisations whose efficacy changes with the new optimisation to be
identified. It is expected that optimisations which affect the control flow graph structure and
basic block size will affect the RAM overlay optimisations — the size of the blocks has a key
role in choosing which code goes into RAM. Also, code which changes the number of loads and
stores in a block may affect the optimisation, since this changes the additional overhead when a
block is placed in RAM (contention on the bus).

6.1.1. Results

The majority of optimisations do not have their efficacy significantly changed when the RAM
overlay optimisation is applied. A good example of this is shown in Figure 6.1, which shows the

82 Combining optimisations

ip
a-

pu
re

-c
on

st
�

in
lin

e-
fu

nc
tio

ns
-c
al
le
d-

on
ce
�

om
it-

fr
am

e-
po

in
te

r
�

tr
ee

-lo
op

-o
pt

im
iz
e
�

tr
ee

-fo
rw

pr
op
�

tr
ee

-c
cp
�

m
er

ge
-c
on

st
an

ts
�

tr
ee

-d
ce
�

gu
es

s-
br

an
ch

-p
ro

ba
bi

lit
y
�

tr
ee

-c
op

y-
pr

op
�

au
to

-in
c-
de

c
�

tr
ee

-t
er
�
dc

e
�

tr
ee

-d
om

in
at

or
-o

pt
s
�

tr
ee

-r
ea

ss
oc
�

de
la
ye

d-
br

an
ch
�

tr
ee

-p
ta
�

if-
co

nv
er

sio
n
�

de
fe
r-
po

p
�
ds

e
�

cp
ro

p-
re

gi
st
er

s
�

sh
rin

k-
w
ra

p
�

ip
a-

re
fe
re

nc
e
�

tr
ee

-s
in

k
�

tr
ee

-b
it-

cc
p
�

if-
co

nv
er

sio
n2
�

tr
ee

-p
hi

pr
op
�

sp
lit

-w
id

e-
ty

pe
s
�

tr
ee

-s
ra
�

ip
a-

pr
ofi

le
�

tr
ee

-d
se
�

co
m

bi
ne

-s
ta

ck
-a

dj
us

tm
en

ts
�

tr
ee

-c
op

yr
en

am
e
�

co
m

pa
re

-e
lim
�

m
ov

e-
lo

op
-in

va
ria

nt
s
�

tr
ee

-c
h
�

tr
ee

-fr
e
�

Optimisation

−35

−30

−25

−20

−15

−10

−5

0

5
O

p
ti

m
is

at
io

n
effi

ca
cy

(%
)

Without RAM overlay (Energy)

With RAM overlay (Energy)

Without RAM overlay (Time)

With RAM overlay (Time)

Figure 6.1: Comparison of effective optimisations for blowfish (O1), on STM32F1, with and without the RAM overlay
optimisation applied.

m
ov

e-
lo

op
-in

va
ria

nt
s
�

tr
ee

-fr
e
�

tr
ee

-d
om

in
at

or
-o

pt
s
�

tr
ee

-c
h
�

om
it-

fr
am

e-
po

in
te

r
�

tr
ee

-lo
op

-o
pt

im
iz
e
�
dc

e
�

if-
co

nv
er

sio
n
�

tr
ee

-t
er
�

cp
ro

p-
re

gi
st
er

s
�

de
fe
r-
po

p
�
ds

e
�

tr
ee

-d
ce
�

sh
rin

k-
w
ra

p
�

tr
ee

-c
op

yr
en

am
e
�

tr
ee

-s
ra
�

if-
co

nv
er

sio
n2
�

tr
ee

-c
cp
�

co
m

bi
ne

-s
ta

ck
-a

dj
us

tm
en

ts
�

ip
a-

pr
ofi

le
�

au
to

-in
c-
de

c
�

sp
lit

-w
id

e-
ty

pe
s
�

tr
ee

-b
it-

cc
p
�

ip
a-

pu
re

-c
on

st
�

tr
ee

-c
op

y-
pr

op
�

ip
a-

re
fe
re

nc
e
�

tr
ee

-p
ta
�

m
er

ge
-c
on

st
an

ts
�

tr
ee

-d
se
�

tr
ee

-r
ea

ss
oc
�

de
la
ye

d-
br

an
ch
�

co
m

pa
re

-e
lim
�

gu
es

s-
br

an
ch

-p
ro

ba
bi

lit
y
�

tr
ee

-fo
rw

pr
op
�

tr
ee

-p
hi

pr
op
�

tr
ee

-s
in

k
�

in
lin

e-
fu

nc
tio

ns
-c
al
le
d-

on
ce
�

Optimisation

−30

−25

−20

−15

−10

−5

0

5

O
p

ti
m

is
at

io
n

effi
ca

cy
(%

)

Without RAM overlay (Energy)

With RAM overlay (Energy)

Without RAM overlay (Time)

With RAM overlay (Time)

Figure 6.2: Comparison of effective optimisations for dijkstra (O1), on STM32F1, with and without the RAM overlay
optimisation applied.

PhD Thesis James Pallister

Fractional factorial design 83

gc
se
�

tr
ee

-p
re
�

tr
ee

-v
rp
�

cr
os

sj
um

pi
ng
�

sc
he

du
le
-in

sn
s
�

ex
pe

ns
iv
e-
op

tim
iz
at

io
ns
�

ip
a-

cp
�

re
or

de
r-
bl

oc
ks
�

sc
he

du
le
-in

sn
s2
�

al
ig
n-

la
be

ls
�

tr
ee

-t
ai
l-m

er
ge
�

sc
he

d-
sp

ec
�

st
ric

t-
al
ia
sin

g
�

re
or

de
r-
fu

nc
tio

ns
�

in
lin

e-
sm

al
l-f

un
ct

io
ns
�

cs
e-
sk

ip
-b

lo
ck

s
�

de
vi

rt
ua

liz
e
�

ip
a-

sr
a
�

op
tim

iz
e-
sib

lin
g-

ca
lls
�

al
ig
n-

fu
nc

tio
ns
�

pa
rt
ia
l-i

nl
in

in
g
�

sc
he

d-
in

te
rb

lo
ck
�

st
ric

t-
ov

er
flo

w
�

in
di

re
ct

-in
lin

in
g
�

th
re

ad
-ju

m
ps
�

gc
se

-lm
�

al
ig
n-

ju
m

ps
�

tr
ee

-b
ui

lti
n-

ca
ll-

dc
e
�

tr
ee

-s
w
itc

h-
co

nv
er

sio
n
�

de
le
te

-n
ul

l-p
oi
nt

er
-c
he

ck
s
�

al
ig
n-

lo
op

s
�

pe
ep

ho
le
2
�

re
gm

ov
e
�

re
ru

n-
cs

e-
af

te
r-
lo

op
�

ca
lle

r-
sa

ve
s
�

cs
e-
fo

llo
w
-ju

m
ps
�

Optimisation

−1.0

−0.5

0.0

0.5

O
p

ti
m

is
at

io
n

effi
ca

cy
(%

)

Without RAM overlay (Energy)

With RAM overlay (Energy)

Without RAM overlay (Time)

With RAM overlay (Time)

Figure 6.3: Comparison of effective optimisations for 2dfir (O2), on STM32F1, with and without the RAM overlay
optimisation applied.

fractional factorial design results for both with and without the RAM overlay optimisation (the
latter being identical to the computed results in Chapter 4). The green bars represent the effect
an optimisation has on energy, while the blue bars represent its effect on time. The overlaid,
hatched versions of each bar are the results with the RAM overlay optimisation.

The second graph, Figure 6.2, shows the dijkstra benchmark. The results are similar to that
of the previous graph (Figure 6.1) in that energy and time both decrease together, however
there is an optimisation which performs differently when the RAM overlay optimisation is
applied. This optimisation is move-loop-invariants, attempting to move code out of a loop
which does not need to be computed each iteration (see page 103). The effect of this optimisation
must be indirect — the move-loop-invariants is applied before the RAM overlay optimisation,
therefore it affects how the overlay is applied. The efficacy is achieved because moving code out
of a loop will decrease both its size and execution time, making it more likely to be placed into
RAM by the overlay optimisation. The optimisation appears as effective for execution time too,
since moving code out of a loop which is placed in RAM will also decrease the overhead of that
block being in RAM (fewer loads causing contention on the bus).

The final graph, Figure 6.3 (2dfir) has an optimisation which does not have a significant effect
when the RAM overlay optimisation is not applied, but has a negative effect when applied.
The optimisation (tree-vrp) performs “value range propagation”, a type of analysis pass that
attempts to propagate interval information about registers and variables to other instructions.
This can enable the deletion of null pointer checks, modifying the control flow graph. In turn,
this leads to larger basic blocks (no splitting where pointer checks would occur), making it more
difficult for the basic block to be moved into RAM.

James Pallister PhD Thesis

84 Combining optimisations

−40

−20

0

20

40
E

ff
ec

t
re

la
ti

ve
to

O
3

(%
)

O3

Genetic bestRAM overlay

RAM overlay and genetic best

E
n

e
rg

y

2dfir
blowfish crc32 cubic

dijkstra fdct

matmult-float
matmult-int

rijndael sha

Benchmark

−40

−20

0

20

40

E
ff

ec
t

re
la

ti
ve

to
O
3

(%
)

T
im

e

Figure 6.4: A plot showing the effect of all combinations of applying the RAM overlay,
and the set of optimisations found by the genetic algorithm, compared to O3. A positive
percentage indicates an increase in energy consumption or execution time. A negative
percentage indicates a decrease.

O3 baseline

RAM overlay

Genetic best

Both (actual)

Both (prediction,
assuming linearity)

6.2. Known good sets

Chapter 4 used genetic algorithms to find a good set of optimisations for each benchmark.
The set of optimisations resulted in up to 27% decrease in energy and 30% decrease in execution
time, compared to O3 on the STM32F1 platform. These sets of optimisations are found using just
the existing optimisations in the compiler. By applying an energy optimisation on top of this
good set of optimisations, it can be seen whether the optimisation still reduces energy, answering
one of the research questions proposed in Chapter 2 — whether a new choice of optimisations
would be needed to combine with the energy optimisations.

Figure 6.4 plots the effect on energy and time of applying the best optimisation set found
(genetic algorithm, optimising for energy), the RAM overlay optimisation, and both the best
optimisation set and the RAM overlay together. These are represented by the points on the
graph, with the arrows indicating the application of the optimisation. When these points form a
parallelogram the optimisations combine linearly — there are no significant interactions between
the set of optimisations chosen by the genetic algorithm, and the RAM overlay optimisation. The
cross marker for each benchmark indicates where the combination of the best optimisation set
and RAM overlay would be if the combination was linear. For example, the energy consumption
for sha when the RAM overlay is applied is the left-most point under sha, at an 8% reduction

PhD Thesis James Pallister

Genetic algorithms 85

Benchmark Energy (%) Time (%)

2dfir -3.2 -18.4
blowfish -2.4 -4.9
crc32 -1.5 0.0
cubic -1.3 0.0
dijkstra -1.6 -0.2
fdct -1.1 -0.1
matmult-float -1.7 -0.1
matmult-int -0.5 3.0
rijndael -7.7 -7.2
sha -0.8 -4.6

Average -2.2 -3.3

Table 6.1: The additional effect on time and energy when using a genetic algorithm and applying the RAM overlay
optimisation together.

relative to O3. The energy consumption when the best optimisations found by the genetic
algorithm are applied is the right-most point, reducing the energy by 3%. The expected energy
reduction when both are applied is 11%, marked by the cross. However, the actual reduction in
energy consumption is slightly larger, at 13%.

The majority of the results suggest that optimisations compose well together — there are
only a few cases where the actual energy is significantly different to the estimation via summing
the effects. In the graph, this manifests as most of the points forming a parallelogram shape.
The result is promising, suggesting that this energy optimisation is mostly orthogonal to the
other performance optimisations applied. Overall, up to 32% of the energy consumed at the best
compiler optimisation level can be saved.

Three of the results have slight deviations from linear composability — dijkstra, fdct and
matmult-int. For these benchmarks there it is likely that the structure of the basic blocks has
changed slightly, resulting fewer blocks that can be placed in RAM.

The second part of the figure shows the execution time corresponding to the energy consump-
tion. These figures are much as expected: the RAM overlay optimisation increases execution
time, and the genetic-algorithm-found optimisations reduce the execution time (since energy
and time are mostly proportional). There is also more composability of energy optimisations
and time optimisations when examining the execution time — this is expected, because as an
optimisation metric, energy consumption depends on execution time, as well as other factors.

6.3. Genetic algorithms

The previous section tested whether the best optimisation set found for the existing compiler
optimisations composed linearly with an energy optimisations, however did not ascertain
whether this set could be improved upon. Here, the genetic algorithm is rerun, with the energy
optimisation as an extension to the gene, allowing it to be turned on or off. By analysing the
resultant sets for differences, the question of whether a different set of optimisations is needed
to enable an effective energy optimisations can be answered.

The genetic algorithm used is identical to the one in Section 4.5.1, with the addition of an
extra bit in the gene to specific whether the RAM overlay should be applied or not.

Overall the optimisation sets produced are very similar to the set without the energy opti-
misation, and the resulting energy is not significantly different. This indicates there are few

James Pallister PhD Thesis

86 Combining optimisations

interactions between the existing optimisations and the RAM overlay optimisations.
Table 6.1 show the additional benefit that can be achieved by the genetic algorithm with the

RAM overlay optimisation as part of the gene. The genetic algorithm always chose to enable the
RAM overlay, and there is very little improvement that can be achieved in terms of energy for
most of the benchmarks — shown by an average of 2.2% improvement in energy. The rijndael
benchmark, however, does see an improvement of 7.7%. The benchmark performed poorly
when just the RAM overlay optimisation was applied on top of O3 because it contains a large
number of big basic blocks. The genetic algorithm which included the RAM overlay optimisation
allows a different set of optimisations to be found, and this optimisation set allowed the energy
optimisation to be effective in this case.

There is little extra reduction available in execution time too, as shown by the time column
in the same table. As with energy, the execution time for rijndael is reduced, however, there is
also a large reduction in the execution time of the 2dfir benchmark. Upon examination of the
individual optimisations selected by the algorithm, the set changes and disables the tree-vrp

optimisation. As identified in the previous section (Section 6.1.1) this optimisation was one
of the few whose effect changed from positive to negative when applying the RAM overlay
optimisation. The genetic algorithm exploited this, disabling the optimisation to slightly reduce
the energy consumption and greatly further reduce the execution time.

6.4. Conclusion

In Chapter 2, the effect an optimisation had on energy, time and power was given,

T′a =kT · Ta (6.1)

P′a =kP · Pa (6.2)

E′a =(kP · Pa)× (kT · Ta), (6.3)

where Ea, Ta, and Pa, are the energy, time and average power before the optimisation’s ap-
plication, respectively. These are transformed by the optimisation’s effect on time, kT , and
power, kP, to form E′a, T′a, and P′a. One of the questions posed asked whether kP and kT affected
each other when two different optimisation sets were applied: one set reducing kT (execution
time optimisations), and one set reducing kP (energy optimisations). This chapter sought to
understand the interactions, and its effect on the choice of execution time optimisations.

Few significant interactions were found between the optimisations for time and the RAM
overlay optimisation, analysed using fractional factorial design. The fractional factorial design
allowed the change in efficacy to be measured for individual optimisations, and only one
optimisation, when considered across the whole benchmark suite, was found to change from
having a positive impact to a negative impact (tree-vrp).

The fractional factorial design analysis examined individual optimisations, but did not look at
many optimisations combining together. Genetic algorithms were used in Chapter 4 to combine
optimisations together and find an improvement in energy over the O3 optimisation level. Using
the per-benchmark sets of optimisations found, the RAM overlay optimisation was applied,
examining whether there were significant increases or decreases in both the energy and time. In
most cases the composition was linear: there were no significant interactions between the best
set of time optimisations and the energy optimisation. For this particular energy optimisation its
effect on the energy and execution time was mostly orthogonal to the other optimisations. This
is because the operation performed is mostly independent of patterns in the code’s structure and
the exact nature of the calculation. In general, energy optimisations which follow this pattern

PhD Thesis James Pallister

Conclusion 87

8 9 10 11 12 13

Average power (mW)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
x
ec

u
ti

on
ti

m
e

(s
)

Best: 2.6 mJ

Worst: 6.7 mJ

RAM overlay
disabled

RAM overlay
enabled

Lowest energy found
Highest energy found
Energy for O3
Energy for O3 + RAM overlay
tree-loop-optimize disabled
tree-loop-optimize enabled

Figure 6.5: A scatter plot of power and time values. Each point is a different combination of compiler optimisations.
The clusters on the left have the RAM overlay optimisation enabled, whereas the clusters on the right do not have the
RAM overlay applied.

should always be orthogonal, and combine linearly with existing optimisations. An additional
optimisation set on which to apply the RAM overlay was found not to be needed — applying
the RAM overlay onto both O3 and the genetic best set of optimisations resulted in close to linear
composability in most benchmarks, for energy consumption and execution time. The two sets
complemented each other well — the RAM overlay reduced energy consumption at the expense
of execution time, whereas the execution time optimisation set reduced both metrics. When
using the genetic algorithm best set, the average execution time increase dropped from 17.9%
increase (just RAM overlay) to 8.5% (both), as well as improving the energy reduction, from
−4.3% over O3 to −11.7%.

One benchmark, rijndael, did not benefit from the RAM overlay optimisation at all, how-
ever, when the genetic algorithm was rerun with the energy optimisation, an alternate set of
optimisation was found that enabled energy savings. The new version of the genetic algorithm
was identical, but allowed the energy optimisation to be applied. With the energy optimisation
applied, the algorithm could search for a set of optimisations which enabled the energy opti-
misation, resulting in a 7% reduction in energy (for rijndael). There were minimal decreases in
energy for the other benchmarks — again suggesting few interactions and linear composability.

While this analysis cannot account for all energy optimisations — only one was tested in
combination here — it adds weight to energy optimisations being a distinct class of optimisation
which can be applied orthogonally to time optimisations.

Figure 6.5 shows many combinations of optimisations for the blowfish benchmark on STM32F1.
Each point is a different combination of optimisations comparing the average power to the exe-

James Pallister PhD Thesis

88 Combining optimisations

cution time. On this graph, an optimisation which generally causes a decrease in execution time
will shift the points down on the y-axis, whereas an optimisation which causes a change in the av-
erage power causes a shift on the x-axis. This is shown by highlighting the tree-loop-optimize
optimisation in red and green — the main shift is vertical. When highlighting the points for all
other time optimisations, the points only shift along the time axis, with no significant effects
along the power axis. This adds weight to the argument that none of the existing optimisations
significantly affect energy via power reduction. On the other hand, the RAM overlay optimisa-
tion does affect the power — the clusters on the left side of the graph have the RAM overlay
enabled, whereas the points on the right have it disabled.

Overall the existing optimisations in the compiler do not seem to significantly affect the
efficacy of the RAM overlay energy optimisation. The energy optimisation can be applied on top
of a set of existing optimisations, without decreasing the efficacy of the existing optimisations,
although the reduction in energy and time provided by the energy optimisation can be variable
(since it is dependent on the sizes of the basic blocks). This has implications for the design
of energy optimisation in general — specific energy-reducing features in the compiler can
be focused on separately from other optimisations, without having to account for interactions
between them. For the application developers this is also beneficial, since the energy optimisation
can be composed easily with typical optimisations that are already applied.

PhD Thesis James Pallister

Chapter 7.
Conclusion

A compiler optimisation will affect key metrics of the program under test, such as energy,
time and average power. As first discussed in Chapter 2, the energy, Ea, of the program, a, can
be calculated from the total time taken, Ta, and the average power, Pa,

Ea = Pa × Ta. (7.1)

When an optimisation is applied, all of these metrics change too. The average power is scaled
by the coefficient, kP, and the execution time is scaled by kT ,

T′a = kT · Ta (7.2)

P′a = kP · Pa (7.3)

E′a = (kP · Pa)× (kT · Ta), (7.4)

where E′a, T′a, and P′a are the energy, time, and power, respectively, after the optimisation has
been applied. This equation shows that the resulting energy consumption after a transformation
is dependent both on the execution time and the average power. Thus, a reduction in energy can
be achieved by either lowering the average power or the execution time. A reduction in energy
can be achieved even in the event of the optimisation increasing the time or power. Overall, a
reduction in energy is possible if kP · kT < 1.

In Chapter 2 it was hypothesised that the majority of pre-existing optimisations in compil-
ers achieve a lower energy consumption primarily by reducing the kT coefficient. Chapter 3
developed a benchmark suite, with characteristics suitable for testing compiler optimisations
and energy consumption. Chapter 4 examined the hypothesis that existing optimisations are
designed purely for time, finding that for almost all existing optimisations the energy efficacy
was a result of a lower kT coefficient. The kP parameter does not stay constant, however, varying
slightly for each optimisation. This is purely a side effect of the optimisation not explicitly
considering power at all — the effect on power is incidental.

Chapter 5 demonstrated another class of optimisations exists, which lowers the energy by
explicitly lowering the average power and achieving a lower kP. These optimisations focus on
lowering the average power of the program, even in the case where this meant an increase in
execution time. The RAM overlay optimisation was successful in reducing energy consumption,
by up to 26% and reducing average power by up to 41%.

When combined with the traditional optimisations in the compiler (Chapter 6), the RAM
overlay proves to be largely independent, achieving a similar reduction in energy consumption
even with different sets of optimisations also transforming the code. This suggests that the
energy optimisation can be applied independently in most cases, and will combine with other
methods to efficiently select compiler optimisations.

7.1. Existing compiler optimisations

“Do existing compiler optimisations save energy purely by reducing the kT coefficient?”

“Are there instances of standard compiler optimisations which affect kP?”

90 Conclusion

The standard compiler optimisations in GCC were examined extensively, analysing their effect
on energy and time, in groups (optimisation levels), individually (using fractional factorial
design) and in carefully chosen combinations attempted to find the best possible set. Overall the
majority of the optimisations affect energy by modifying the kT coefficient. A few optimisations
also affect kP: the optimisation flags schedule-insns and schedule-insns2 both influence kP
in different ways. These optimisations perform instruction scheduling before and after register
allocation, respectively (see Section 4.4.3 for more detail).

The analysis performed on individual optimisations was used to determine whether a single
group of optimisations is effective for multiple benchmarks or platforms. Overall, there are
optimisations which are effective for the same benchmark over different platforms, and the
same platform for different benchmarks. However, there is not a set of optimisations, or a single
optimisation which is consistently effective for all benchmarks and platforms.

Since there is a lack of optimisations which affect the change in power without also affecting
the execution time, this suggests there may be a new class of optimisations which specifically
target average power reduction. It is not unexpected that the existing optimisations have a much
larger effect on execution time than energy consumption, since the original design goals of these
optimisations is to make the code faster to execute.

Overall this means that there is only marginal additional benefit to targeting energy con-
sumption over execution time when purely utilising existing compiler optimisations — in almost
all cases the execution time can be used as a proxy for energy consumption. Since energy
consumption is more challenging to measure than execution time, an effective way to optimise
for energy in absence of measurement equipment is purely to minimise execution time. This
is shown by the genetic algorithm finding similar solutions when optimising for energy and
for time. For all benchmarks the energy and time savings achieved are very similar, with a
maximum of 5% difference when choosing to minimise energy.

7.2. Optimisations for energy

“Is there a class of optimisations which lower energy consumption via reducing kP?”

“Are these optimisations structured or applied differently to regular optimisations?”

“Can these optimisations effectively reduce energy?”

Two energy characteristics were explored, with the objective of exploiting these features and
developing an optimisation to reduce energy via reducing the average power. Both of these
characteristics involve the embedded flash memory present in the majority of the deeply embed-
ded SoCs, and can be exploited since the code is often executed directly from the flash. The first
effect is the structure of embedded flash affecting how much energy is necessary to load from a
specific location, and when executing code its absolute position can cause different amounts of
energy to be consumed. Secondly, accessing flash is more power hungry than accessing RAM,
and code can be moved from flash to RAM to lower the overall energy (lowering energy by up
to 26%, with an average reduction of 10% in our experiments).

These optimisations are of a fundamentally different structure to that of execution time
optimisations. While optimisations for time typically reduce and reorder the code, these op-
timisations tend to focus on how and where the code is executed. The difference in structure
suggests that optimisations which target energy consumption must be structured differently
to typical compiler optimisations. Another difference between these optimisations is that the
energy optimisations take a global view of the code, and are performed late in the compilation
process. The optimisations both require very low-level information about the SoC, mapping this

PhD Thesis James Pallister

Optimisations for energy 91

to the higher compiler level. This is akin to pipeline modelling for performance optimisations,
but requires much more hardware specific detail.

This changes the way that the search for optimisations is conducted. For many compiler
optimisations the effect is local, and based on restructuring a small amount of code. For effective
energy optimisations a global view of the program must be taken, and the entire context of
the execution should be taken into account (i.e. the hardware, and its environment). These
points are reflected in other optimisations targeting energy — DVFS needs to have a view of
the whole program, as well as the possibly accessing peripherals to change the voltage and the
frequency [103]. Inserting sleep modes [4] also requires this level of global information, and
specific details about the processor’s idle instruction.

Section 5.5.3 suggested the following methodology for finding new optimisations to reduce
energy:

1. Identify unusual energy behaviour through empirical testing and examination of the
target SoC. Controllable hardware features which affect the energy consumption must be
found.

2. Construct a model which allows this behaviour to be investigated from a higher level.
A model is necessary to relate the high-level operation of a stream of instructions, or other
software features to the energy consumption of the hardware.

3. Use the model in the compiler. The model can be used to inform compiler optimisations,
determining what modifications should be made to the code.

The most challenging step of this procedure is identifying unusual energy behaviour, since
often this requires extensive testing and energy measurement hardware.

7.2.1. Code alignment

The energy consumption of a section of code that is executed directly from flash depends
on its absolute position in the memory. Effects such as crossing a page boundary increase the
energy cost of a sequence of accesses to the memory. An energy model of the embedded flash
memory was constructed, allowing the flash memory’s energy to be calculated for an instruction
sequence. An optimisation was developed to utilise this model by realigning basic blocks so that
fewer costly boundaries are crossed.

The optimisation is shown to reduce the energy, however the reduction is small. In some
platforms, such as the STM32F1, it is not possible to significantly reduce the embedded flash’s
energy, since the largest cost is crossing a 4-byte address boundary. These crossings happen
frequently and many are necessary, resulting in only a minimal possible energy reduction. Other
platforms, such as ATMEGA, have small coefficients for the small boundaries. These can be
more effectively optimised, however for this particular platform the flash memory represented a
small fraction of the total SoC energy.

Overall, the optimisation resulted in very little energy being saved — in many of the SoCs a
large fraction of the flash energy is an unavoidable cost. However, there is possibly the scope
for a more complex optimisation to utilise the embedded flash energy model to make code
placement decisions.

7.2.2. RAM overlay

The RAM overlay optimisation exploited the difference in energy consumption when execut-
ing directly from RAM and directly from flash. In general, an instruction consumes 30–60% less
energy when executed from RAM instead of flash. When combined with the fact that a small

James Pallister PhD Thesis

92 Conclusion

Unoptimised

Po
w

er

Optimised

Po
w

er

Time

Active region Sleep region

Figure 7.1: A periodic application before and after the application of the RAM overlay optimisation.

portion of the code is the majority of the runtime, the most intensive regions of code can have
their energy minimised while using only a small amount of RAM.

The optimisation identifies the hot regions of code and places them into RAM, while balancing
the overhead from doing this. The main overheads stem from the memory regions for RAM
and flash being in different parts of the address space and requiring indirect branching to jump
between them. A model is constructed to account for this effect, and this model is minimised,
giving a set of basic blocks that should be placed in RAM.

The optimisation saves up to 26% of the application’s energy, only requiring a small amount
of RAM. However, the optimisation also increases the execution time by up to 40% at the same
time. While the increase in execution time can be problematic for some applications, it also
means that the average power is significantly lower — 41% lower in some cases. For periodic
applications (see Figure 7.1) this can be beneficial — the significantly lower power and increased
execution time results in a lower overall energy for these applications. This occurs even in
the case where the RAM overlay was unable to decrease energy for the active region, but still
increased execution time and reduced average power — Figure 7.2 exemplifies this case and
how the energy is lowered through a reduction in the sleep time.

The optimisation is an effective way to save energy, and can be applied to applications which
periodically wake to perform computation with successful results. The specific implementation
of the algorithm, as a post-compiler pass, limits its efficacy. However, if it was fully integrated
into the linker more effective decisions could be made, putting frequently executed library
code into RAM and saving energy on the benchmarks for which are currently beyond the
optimisation’s reach (benchmarks using emulated floating-point and extensive library calls).

7.3. Combining optimisations for time and optimisations for energy

“Do optimisations designed to lower kP affect optimisations which lower kT?”

“Are there significant interactions between the two classes of optimisation?”

“Is there a different ’best’ set of optimisations when including energy optimisations?”

The combination of the RAM overlay optimisation and the existing optimisations in the compiler
gives insight into how an energy optimisation affects optimisations for performance. The RAM
overlay optimisation is mostly orthogonal to the existing optimisations — the effects on both
time and energy compose linearly when the two are combined. This suggests that these types of
energy optimisations are independent from execution time optimisations, with the interaction

PhD Thesis James Pallister

Future work 93

5 ms 10 ms

10
m

W

1
m

W

50µJ

10µJ

Unoptimised: 60µJ

10 ms 5 ms

5
m

W

1
m

W

50µJ

5µJ

Optimised: 55µJ

Same energy Different energy

Figure 7.2: Even if the RAM overlay does not reduce energy for the active region, in a periodic application the reduced
power and increased time leads to an overall lower energy.

causing only 1–2% change in energy or time. This conclusion is not necessarily intuitive —
the RAM overlay occurs after all other optimisations have been applied and thus should be
affected by the changes to the code. Particularly for the RAM overlay optimisation, the lack of
interactions with other optimisation is due to its global nature, and it attempting to always put a
maximal amount of code in RAM. If the code of one block changes and becomes unsuitable for
RAM placement, a different block or combination of blocks will be selected which has the next
best energy consumption.

The fractional factorial design exploration of individual optimisations was repeated with
the RAM overlay enabled. Only one case was found where an optimisation had a significantly
different effect when the RAM overlay was applied (tree-vrp), going from a beneficial effect on
energy to an increase in it. This optimisation propagated information through the IR, informing
other optimisations about the ranges of values variables can take, allowing them to be more
effective. When this optimisation was combined with the RAM overlay, it affected the code
structure in such a way that fewer basic blocks could achieve a lower energy. All other optimisa-
tions did not significantly change with the RAM overlay in efficacy — they either increased or
decreased the energy to a similar degree.

A genetic algorithm could not find a set of optimisation which performed significantly better
when also given the RAM overlay optimisation to enable or disable, and in all cases chose to
enable the RAM overlay. This further suggests that the RAM overlay is mostly independent of
existing optimisations.

7.4. Future work

There is much future work to be done in all of the areas this thesis covers, including compiler
optimisation, energy efficiency and embedded systems. This section discusses some of the
individual extensions that could be made to the issues explored in this thesis, and then larger
overall goals.

7.4.1. Further research questions

While this thesis extensively explored the research questions posed, there are many additional
questions raised for the specific topics within. In particular, the two potential optimisations

James Pallister PhD Thesis

94 Conclusion

presented in Chapter 5 require a global view of the program — the deficiencies in the RAM
overlay optimisation are mostly caused by the optimisation not having full visibility of the code
within the library functions. Other existing ‘energy optimisations’, such as DVFS also use the
whole program to make decisions, and it is currently unknown whether an energy optimisation
generally requires this global view to be effective.

Since the proposed code-alignment optimisation was only marginally effective, an optimisa-
tion which utilises the model in a more novel way may be able to achieve larger savings. An
optimisation such as reordering basic blocks, or even radically restructuring the code so it does
not cross expensive boundaries may be possible. The model itself can be extended, based on
the observation that the flash wait-states may affect the coefficients of the model, as well as
DVFS which may require different energy coefficients for each voltage-frequency pair. Further
exploring the structure of flash to find additional effects may also be fruitful, such as whether the
exact value stored by the flash affects its energy. Previous work in this area by Joo et al. suggests
that in some cases this could be significant [132].

The RAM overlay optimisation could also benefit from exploring the trade-offs with flash
wait-states and DVFS. In particular, with flash wait-states the RAM becomes faster to execute
from than the flash. While this could be handled already by the model in Section 5.4.2, some
minor modifications may need to be made. The model can also be easily extended to the case
where the basic blocks must be transferred to RAM at the beginning of execution. This needs
to be taken into account in the case where the SoC goes into a very deep sleep that loses all
RAM contents, and the code must be reloaded on waking. Larger modifications are necessary
if the RAM overlay is extended to a fully dynamic approach, loading and evicting code as
necessary [5], although the benefits of this approach for deeply embedded systems are not
immediately obvious.

The chapter on combining energy optimisations with time optimisations (Chapter 6) only
looked at a single optimisation — this could be extended to look at combinations of multiple
different optimisations for energy consumption, and whether they also combine linearly. This
first requires additional effective optimisations for energy to be devised.

7.4.2. Future research direction

The existence of a class of optimisations specifically for energy consumption draws parallels
with the autovectorisation attempts currently in compilers — both exploit features that can be
specific to individual SoCs and attempt to change the code in a specific way to achieve these
goals (by utilising specialised hardware). When more optimisations for energy are added to this
class, they will likely only apply to specific hardware, and possibly require machine-assisted
or developer tuning (as with the amount of available space in RAM for code, with the RAM
overlay).

A significant question is whether these energy optimisations will still be effective when
used in a multi-threaded setting. In some cases, multi-threading makes the modelling phase
of constructing an optimisation more challenging. For example, many instruction-level energy
models propose using the number of bit flips between consecutive instructions as part of the
model [12]. This approach encounters difficulties with Simultaneous MultiThreading (SMT)
type processors (for example, the XMOS processor), where consecutive instructions may be from
separate threads. The interleaving of these threads can change frequently, particularly when
data dependent effects change the control flow, causing the exact sequence of instructions down
the pipeline to be unknown [13]. When caches are also involved with SMT, different methods of
partitioning problems across the threads have differing performance [133], and likely differing
energy effects.

Compiler optimisations can also be effective in a multi-core setting where each core can be

PhD Thesis James Pallister

Future work 95

put to sleep while waiting on other cores to compute data. In this case, an energy optimisation
should attempt to maximise the number of cores that are in a low-power state, and the length of
time they are in that state. This could involve moving certain items of code between threads,
or even moving threads between cores with different performance and efficiency trade-offs,
as in ARM’s big.LITTLE [134]. Managing the complexity of these problems is an ongoing
research topic. Overall, it is possible that there are even larger energy savings to be made when
considering parallel programs.

The majority of this thesis has focused on embedded systems, and it is currently unknown
whether the answers to the research hypotheses hold for larger, more powerful systems, such as
desktop computers and servers. These systems all utilise formidable memory hierarchies, which
add non-determinism and make the efficacy of an optimisation more challenging to estimate —
it is more dependent on the context of the program’s execution.

As more optimisations and optimisations of high complexity are added to the compiler, more
advanced methods are needed to select and order these transformations to ensure maximum
efficiency. The inherent problem behind this is the unpredictability of an optimisation’s effect
and unclear relationships between the code before and after the transformation. The RAM
overlay optimisation exhibits this behaviour — the ILP solver can choose a completely different
set of blocks to be placed in RAM with just a small tweak of the code. This presents a trade-off
between achieving maximal effectiveness, and predictability of the optimisation — if a greedy
approach of placing the most frequently executed basic block in RAM had been taken, the
optimisation would be more predictable, but would not have decreased the energy as much.
There is evidence that using features of the code’s structure and machine learning can be used
to guide how and when to apply an optimisation, and it is possible that this could similarly be
used to guide the application of energy optimisations.

Overall the compiler’s efficacy is limited by the layers of abstraction between the software
and the hardware. The use of very high-level languages further detaches the actual energy
consumption of the hardware from the structure of the code that is running. Often this makes it
challenging to optimise the code in a way that will reduce energy consumption.

Compilers and related tools have typically been one-way translation methods from these
programming languages to very low-level assembly code. To effectively optimise the reverse
must happen — low level energy behaviour and artefacts must be translated back upwards
to the software and the associated toolchain. Such mappings have been extensively explored
between the hardware and instructions in the form of instruction-level energy models (and the
flash-memory model in this thesis), but there are few methods of reliably mapping up to the
programmer’s level from assembly code. For compilers to be more effective at energy reduction,
development of these tools is required.

The lack of transparency from the compiler level down to the hardware’s energy-consumption
level leads to compilers currently being limited in optimisation capability. With current compil-
ers, only a small energy saving can be achieved, whereas with tools which use low-level energy
behaviour at the application level much larger savings may be possible.

James Pallister PhD Thesis

96

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Appendices

98

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Appendix A.
Optimisation Reference

This appendix lists some of the standard optimisations commonly mentioned in this thesis,
and describes how they work and their potential benefits.

Branch chaining. Branch chaining is an optimisation which reduces the amount of branching
that needs to be performed [100]. After other optimisations have been applied, the code
may result in a branch which targets another branch. The optimisation replaces the
initial branch’s destination with the final destination, skipping the intermediary branch
instructions. This reduces the amount of branching, making the program execute faster.

; miscellaneous computation

b label

...

label:

b next

next:

...

⇒

; miscellaneous computation

b next

...

label:

b next

next:

...

The above example has two branches. The first branch jumps to label, which just executes
another branch to next. The optimisation replaces the first branch with a branch to next.

Common subexpression elimination. Common subexpression elimination removes expres-
sions which appear multiple times in the code, storing the result and using this stored
result in place of repeating the computation [135]. This reduces the number of instructions
that must be executed. The optimisation can be applied whenever an expression appears
identically on the same control flow path.

a = (b + 1) * (b + 1); ⇒ tmp = b + 1;

a = tmp * tmp;

In the above example, the expression b + 1 appears twice, so is stored in the temporary,
tmp, in the transformed code.

Constant folding. Constant folding is an optimisation that identifies expressions which result
in a constant, by evaluating the operations performed on them [135]. For example, an add
operation with two constants as operands can be collapsed to a single constant. Folding
the constants reduces the number of instructions which need to be executed at runtime.

z = 10 + 12; ⇒ z = 22;

The above example folds the 10 + 12 expression into 22. While a programmer is not likely
to initially write such an expression, the constant values could be the result of another
optimisation.

Constant propagation. Constant propagation allows the compiler to propagation knowledge
about which variables have constant values in them [135]. This can enable further optimisa-
tions, such as constant folding, as well as reducing the amount of runtime work that needs

100 Optimisation Reference

to be performed. Often constants can be embedded directly into the instruction, rather
than loading a value (as would be done with a variable), giving additional speed gains.
To perform the optimisation, the compiler must be certain that the value in the variable is
constant.

x = 10;

y = 12;

z = x + y;
⇒

x = 10;

y = 12;

z = 10 + 12;

In the above example, the compiler knows that the values of x and y are constant, and
therefore can replace the uses of the variable.

Copy propagation. This optimisation is very similar to constant propagation, except propagates
variables which are equal to another variable [135]. When the compiler can determine
the value stored in that variable is identical to another variable, either variable can be
chosen. This can reduce the number of registers needed, and the amount of load and stores
necessary to retrieve variable contents.

x = a;

y = x + 10; ⇒ x = a;

y = a + 10;

The above example propagates the assignment of a to x into the last expression.

Dead code elimination. Dead code elimination removes code from the program which is never
executed [135]. This often occurs after other optimisations are applied and can result in
reducing the total amount of computation that is performed. The code can also reduce the
amount of branching, if a particular branch of a condition is shown never to be executed.

int function(int x)

{

return x * 2;

int y = x + 1;

}

⇒

int function(int x)

{

return x * 2;

}

In the above example, the assignment of the variable y is not reachable and therefore the
expression computing this value can be removed without affecting the functionality of the
program.

Expression simplification. This optimisation is the application of simple algebraic rules to
simplify any mathematical operations the code performs [135]. These operations often
reduce the total number of instructions required to compute the result. For example
applying distributivity rules, a× (b + c) ≡ a× b + a× c, can simplify the expression a×
b + a × c into a × (b + c). The latter expression requires only one multiplication instead
of two. However, the trade-off can be complex, since the longer expression has fewer
interdependencies and could possibly take advantage of instruction level parallelism. Also,
the optimisation can only be applied to certain types — operations such as floating point
often cannot be rearranged this way.

x = a * 1; ⇒ x = a;

The example above applies the identity, x× 1 ≡ x, to the code allowing the expression to
be simplified.

PhD Thesis James Pallister

101

Function inlining. The function inlining optimisation reduces the overhead of calling functions,
by copying the body of the function into the caller [136]. While this does increase code
size, it allows further optimisations to be applied to the combined code, and removes
branching and stack modification overhead. The compiler must determine how many
times the function is called, and how large the function is to decide whether it is likely to
be beneficial to inline the function.

int fn1(int y)

{

return y * y;

}

int fn2(int x)

{

return fn1(x) + 1;

}

⇒

int fn1(int y)

{

return y * y;

}

int fn2(int x)

{

return x * x + 1;

}

The above example inlines the function fn1, into fn2, removing the overhead of calling fn1

in fn2. The original function will remain in the code if it is called elsewhere or not deemed
beneficial to inline.

Reorder blocks. This optimisation involves using knowledge about the likely result of a condi-
tional branch instruction, enabling blocks to be reordered, and fewer jumps taken. This
should result in fewer execution cycles, since taking a conditional branch typically requires
more cycles to execute than not taking the branch. The optimisation tries to place the most
likely block directly after the branch in memory, allowing the faster ‘fall-through’ path to
be taken.

if(x == 0)

y++;

else

y = y * z;

; unlikely to be true

cmp r0, #0

bne else_condition

mul r1, r2

b end

else_condition:

add r1, #1

end:

⇒

; likely to fallthrough

cmp r0, #0

beq if_condition

add r1, #1

b end

if_condition:

mul r1, r2

end:

In the above example, an analysis pass has determined that the condition r0 == 0 is
unlikely to happen, and therefore inverts the condition

If-conversion. If-conversion attempts to remove the branches created by conditional statements
in the code [137]. It does this by attempting to create an equivalent branch-free section of
code. If-conversion is only typically beneficial for short conditional blocks, or on processors
with very large branching penalties.

if(x > 10)

y = 0;
⇒ y = y & -(x > 10);

James Pallister PhD Thesis

102 Optimisation Reference

The example above transforms the if statement into a simple assignment expression. The
expression exploits the combination of arithmetic, bitwise and conditional operators — the
conditional operator in the parenthesis evaluated to either one or zero. If it is zero, the
entire expression becomes y bitwise-anded with 0, resulting in zero. Otherwise, the one is
negated and bitwise-anded with y. This preserves the value in y, since -1 is represented by
every bit set.

Instruction scheduling. Instruction scheduling is an assembly-level backend optimisation [135].
The optimisation attempts to reorder instructions, to reduce stalls in the processor’s pipeline.
Many processors do not have full instruction bypassing implemented in the pipeline,
therefore an instruction which requires the result of an immediate predecessor may be
stalled, while waiting for the instruction’s results to be written into the register file. The
reordering attempts to move other instructions in the place of these stall cycles, maintaining
the computational throughput.

add r0, r1

mul r0, r0

sub r2, r3

bic r3, r2

⇒
add r0, r1

sub r2, r3

mul r0, r0

bic r3, r2

In the above example, the instructions are interleaved, so that the r0 and r2 registers do
not need to be read immediately after they are written to.

Jump threading. Jump threading is an optimisation which attempts to reduce the number of
conditionals and branches that must be executed [138]. This occurs when a previous
expression sets a variable in such a way that ensures a subsequent expression is always
true or false. When this is the case, the control flow can jump directly from the first block
into the subsequent block, bypassing the conditional and jump instructions. This reduces
the amount of branching that must be performed and should increase the performance of
the program.

if(x == 0)

{

y = 0;

}

if(y == 0)

{

a += 5;

}

⇒

if(x == 0)

{

y = 0;

goto label;

}

if(y == 0)

{

label:

a += 5;

}

In the above example, when x == 0, the following condition (y == 0) is always true.
Therefore the execution can jump directly out of that if block into the second condition’s
block.

Loop fusion. The loop fusion optimisation takes two loops and attempts to combine them into a
single loop [135]. This is most easily done when the number of iterations the loop performs
is the same. By reducing multiple loops into one loop, the overhead is reduced. Other
effects must be considered, since if the loops are large, the resultant loop may not fit into
instruction cache and thus execute slower.

PhD Thesis James Pallister

103

for(i = 0; i < 10; ++i)

x++;

for(i = 0; i < 10; ++i)

y = y * 2;

⇒

for(i = 0; i < 10; ++i)

{

x++;

y = y * 2;

}

The above two loops both have the same iteration count, and can be merged into a single
loop.

Loop header copying. Loop header copying is an optimisation which duplicates the portion of
the loop which checks whether the loop conditions still hold, exiting if they do not [139].
This optimisation can save some branching, and enables further optimisation of the loop
— since the condition is duplicated at the end of the loop body, it can be optimised and
scheduled with that basic block.

...

; loop entry

b loop_header

loop_body:

add r0, #1

loop_header:

cmp r0, r1

beq loop_exit

bne loop_body

loop_exit:

⇒

cmp r0, r1

beq loop_exit

3 bne loop_body

loop_body:

add r0, #1

; a new basic block here

; is not necessary now

cmp r0, r1

9 beq loop_exit

bne loop_body

loop_exit:

In the above example, the loop header (the compare instruction and two branches) is
duplicated at the entry to the loop. Note that further optimisations would likely remove
the branches on lines 3 and 9, since these fall through into the following code.

Loop interchange. Loop interchange (also called loop permutation) is an optimisation which
permutes the order of a nested loop structure, based on some criteria [135]. These criteria
take into account the sequence of memory accesses in the loop body, and how the access
pattern would be changed by modifying the order of the loops. Often the loops are
permuted so that data which is accessed in subsequent iterations is likely to still be in cache,
providing a speed up.

for(j = 0; j < 1000; ++j)

for(i = 0; i < 1000; ++i)

a[i][j]++;

⇒
for(i = 0; i < 1000; ++i)

for(j = 0; j < 1000; ++j)

a[i][j]++;

In the above example, the loops are swapped in order. This may provide a speed boost due
to the way the two-dimensional array is accessed in the loop body.

Loop invariant motion. Loop invariant motion is a loop optimisation which moves code out of
a loop that can be shown not to change from iteration to iteration, i.e. it is invariant. This
reduces the amount of redundant computation that must be performed, since the result of
the expression is identical every time, and can just be computed once.

James Pallister PhD Thesis

104 Optimisation Reference

for(i = 0; i < 1000; ++i)

{

a = x + y + z;

array[i] = a * i;

}

⇒

a = x + y + z;

for(i = 0; i < 1000; ++i)

{

array[i] = a * i;

}

In the above example, the expression, a = x + y + z, is moved out of the loop, since it
does not depend on any expression derived from a loop variable.

Loop tiling. Loop tiling (also called loop blocking) restructures large loops by adding an extra
loop, with a counter incrementing by the tile size [136]. The inner loop is then modified
to iterate up to the tile size. This divides the larger loop into blocks, often enhancing the
cache locality properties of the loop. The restructuring is most effective on multiple nested
loops, where data is accessed locally, i.e. adjacent positions in a multidimensional matrix.

for(i = 0; i < 1000; ++i)

for(j = 0; j < 1000; ++j)

a[i][j]++;

⇒

for(ib = 0; ib < 1000; ib += 50)

for(jb = 0; jb < 1000; jb += 50)

for(i = ib; i < ib + 50; ++i)

for(j = jb; j < jb + 50; ++j)

a[i][j]++;

The example above shows two loops which are both tiled to sizes of 50 iterations. A further
operation, such as loop interchange could swap the second and third two loops, resulting
in the array being iterated over in tiles of 50 by 50. If the inner of the loop performed lots of
local accesses (i.e. to adjacent array cells), then this keeps the relevant data in cache.

Loop unrolling. The loop unrolling optimisation attempts to minimise the loop overhead by
expanding several iterations of the loop into a straight line [136]. This is most easily per-
formed when the iteration count is known, and is a multiple of the unroll factor (otherwise
a possibly conditional loop prologue or epilogue must be added to account for the extra
iterations). The unrolling will also enable further optimisations to transform the code,
providing additional gains. Loop unrolling can increase code size by a large amount, and
care must be taken to not negate any of the optimisation benefits by creating code which
does not fit in the instruction cache.

for(i = 0; i < 60; ++i)

x = x + 1;
⇒

for(i = 0; i < 60; ++i)

{

x = x + 1;

++i;

x = x + 1;

++i;

x = x + 1;

}

In the above example, the loop is unrolled three times, duplicating both the body of the
loop and the loop increment expression (++i).

Loop unswitching. Loop unswitching is a transformation that moves conditional statements
out of the inner body of the loop, duplicating the loop in the process [136]. This can only
be performed if the result of the conditional statement is invariant for the duration of the
loop. This can decrease execution time, at the expense of increasing code size, since there
are fewer branches inside the loop, and possibly fewer instructions executed overall.

PhD Thesis James Pallister

105

for(i = 0; i < 10; ++i)

{

if(flag)

b[i] = a[i];

a[i]++;

}

⇒

if(flag)

for(i = 0; i < 10; ++i)

{

b[i] = a[i];

a[i]++;

}

else

for(i = 0; i < 10; ++i)

a[i]++;

The above example shows a condition on flag inside the loop. This test is moved outside,
and the loop duplicated.

Predictive commoning. Predictive commoning is an optimisation which attempts to reuse
expressions that are computed inside loop bodies [140]. This optimisation is similar to
common subexpression elimination, however, accounts for the recurrences of complex
expressions inside loops. The optimisation minimises the number of array elements and
expressions which must be loaded each loop iteration.

for(i = 0; i < 10; ++i)

{

a[i+2] = 3 * a[i+1] + a[i];

}

⇒

t1 = a[0];

t2 = a[1];

for(i = 0; i < 10; ++i)

{

t3 = 3 * t2 + t1;

a[i+2] = t3;

t1 = t2;

t2 = t3;

}

In the above example, the first loop performs two loads each iteration. However, these
loads are simply retrieving data previously stored by a[i+2]. In the transformation, the
computed values are stored in t1 and t2 between loop iterations to minimise the number
of array loads necessary.

Omit frame pointer. The frame pointer is used to mark the beginning of a function’s frame on
the stack. This is particularly useful for debugging and stack unwinding. However, it
requires the use of an additional register and stack location for each function that is called.
The omit frame pointer optimisations does not store this frame pointer, which can make
debugging more difficult, but allows the register to be used for other variables. This will
reduce spilling onto the stack in regions of high register pressure and decreasing execution
time. Additionally, since the frame pointer is not saved, this reduces the required stack
memory for a program, and removes load and store operations to the stack for this pointer,
also reducing program execution time.

function:

str fp, [sp, #-4]!

mul r3, r0

mov r0, r3

ldr fp, [sp], #4

bx lr

⇒

function:

mul r3, r0

mov r0, r3

bx lr

James Pallister PhD Thesis

106 Optimisation Reference

The above example shows the removal of load and store operations to the stack where the
frame pointer is saved. Also since the fp register is no longer used, this can be used for
general purpose computation.

Redundancy elimination. Redundancy elimination is similar to common subexpression elim-
ination, focusing on eliminating expressions which appear in multiple basic blocks in
the control flow graph [136]. For example, if two identical expressions appear in all the
predecessors to a block, the expression can be moved into the final basic block, rather than
being computed in every block. This does not necessarily make the program execute faster,
but should reduce the code size, which may increase speed, through instruction cache
effects.

if(x < 50)

{

x++;

y = y * 2;

}

else

{

x--;

y = y * 2;

}

⇒

if(x < 50)

{

x++;

}

else

{

x--;

}

y = y * 2;

The above example has the expression y = y * 2 in both paths through the code, so this
can be moved above or below the conditional.

Strength reduction. Strength reduction is an optimisation that attempts to replace expensive
operations with functionally equivalent and cheaper operations [136]. The classical example
of this is multiplication by two, which can be replaced by adding the number to itself. This
may speed up the program on some architectures where a multiply is more expensive than
an addition.

x = x * 2; ⇒ x = x + x;

In the above example, the multiplication is changed to the equivalent addition.

PhD Thesis James Pallister

Appendix B.
Datasets

The following table lists the optimisation sets found for each benchmark on the STM32F1
SoC. Each benchmark has four different sets of optimisations — corresponding to the goals
minimise energy, minimise time, minimise power, and maximise power.

Minimise energy

Minimise time

Minimise power

Maximise power

Optimisation disabled
Optimisation enabled

The above diagram indiciates that the specified optimisation should be enabled to minimise
power, but disabled for the minimise energy, minimise time and maximise power goals.

Optimisation 2dfir
blowfish

crc32
cubic

dijkstra
fdct

matmult-fl
oat

matmult-i
nt

rijn
dael

sha

align-functions
align-jumps
align-labels
align-loops
auto-inc-dec
caller-saves
compare-elim
cprop-registers
crossjumping
cse-follow-jumps
cse-skip-blocks
dce
defer-pop
delayed-branch
delete-null-pointer-checks
devirtualize
dse
expensive-optimizations
gcse
gcse-after-reload
gcse-lm
guess-branch-probability
hoist-adjacent-loads
if-conversion
if-conversion2
indirect-inlining
inline-functions
inline-small-functions
ipa-cp-clone
ipa-profile
ipa-pure-const
ipa-reference
ipa-sra
merge-constants
omit-frame-pointer

108 Datasets

Optimisation 2dfir
blowfish

crc32
cubic

dijkstra
fdct

matmult-fl
oat

matmult-i
nt

rijn
dael

sha

optimize-sibling-calls
partial-inlining
peephole2
predictive-commoning
regmove
reorder-blocks
reorder-functions
rerun-cse-after-loop
sched-interblock
sched-spec
schedule-insns
schedule-insns2
split-wide-types
strict-aliasing
strict-overflow
thread-jumps
tree-bit-ccp
tree-builtin-call-dce
tree-ccp
tree-ch
tree-copyrename
tree-dce
tree-dominator-opts
tree-dse
tree-forwprop
tree-fre
tree-partial-pre
tree-phiprop
tree-pre
tree-pta
tree-slsr
tree-sra
tree-switch-conversion
tree-tail-merge
tree-ter
tree-vectorize
tree-vrp
unit-at-a-time
unswitch-loops
vect-cost-model

PhD Thesis James Pallister

Glossary

AST Abstract Syntax Tree. A tree-like representation of the source code after parsing. 24, 50

basic block A straight-line sequence of instructions where the only possible entry is to the first
instruction and the only exit is after the last instruction. 56

CFG The Control Flow Graph (CFG) is formed of all the basic blocks and their edges. 71

constant pool An section of memory embedded within code that stores locally accessed con-
stants/data. 57

dominator A basic block, A, dominates another block, B, if all paths of execution must go
through block A to reach block B. 36, 109

dominator tree A tree of nodes where a node’s parent is the immediate dominator of the node.
36

DVFS Dynamic Voltage and Frequency Scaling. 14, 28, 91, 94

fractional factorial design A statistical technique to reduce the number of tests needed when it
is expected that there are few higher-order interactions. 32, 33, 36, 81, 90

higher-order interactions Interactions which occur which a combination of two or more param-
eters (optimisations) are enabled. 32

hill climbing An objective-maximisation method where solutions immediately adjacent to the
current are explored and the best one selected. This is repeated iteratively to find the
maximum. 26, 27

ILP Integer Linear Programming is a maximisation or minimisation problem expressed in terms
of constraints where variables are integer. 48, 49, 72, 75

IR Intermediate Representation. A simplified representation of the sourcecode suitable for
optimisation. 24, 50

NRMSD Normalised Root Mean Square Deviation. Compare two sequences of values. Defined

as

√
∑n

i (xi−yi)2

n
xmax − xmin

where xi and yi are the sequences of values. 59

SIMD Single Instruction Multiple Data. 2, 28

110

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Bibliography

[1] T. Patyk, H. Hannula, P. Kellomaki, and J. Takala. “Energy consumption reduction by automatic selection of
compiler options”. In: 2009 International Symposium on Signals, Circuits and Systems. IEEE, July 2009, pp. 1–4. ISBN:
978-1-4244-3785-6. DOI: 10.1109/ISSCS.2009.5206106.

[2] A. Parikh, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. “Instruction scheduling based on energy and
performance constraints”. In: Proceedings. IEEE Computer Society Workshop on VLSI. IEEE Comput. Soc, 2000,
pp. 37–42. ISBN: 0-7695-0534-1. DOI: 10.1109/IWV.2000.844527.

[3] S. Wu and S. Li. “Instruction Selection for ARM/Thumb Processors Based on a Multi-objective Ant Algorithm”.
In: Computer Science - Theory and Applications. Lecture Notes in Computer Science 3967.90207019 (2006). Ed. by
D. Grigoriev, J. Harrison, and E. A. Hirsch, pp. 641–651. DOI: 10.1007/11753728.

[4] A. Seth, R. B. Keskar, and R. Venugopal. “Algorithms for energy optimization using processor instructions”. In:
CASES ’01 Proceedings of the 2001 international conference on Compilers, Architecture, and Synthesis for Embedded
Systems. New York, New York, USA: ACM, 2001, p. 195. ISBN: 1581133995. DOI: 10.1145/502251.502252.

[5] M. Verma, L. Wehmeyer, and P. Marwedel. “Dynamic Overlay of Scratchpad Memory for Energy Minimization”.
In: International Conference on Hardware/software Codesign and System Synthesis. ACM, 2004. ISBN: 1581139373. DOI:
10.1109/CODESS.2004.240826.

[6] R. Wilhelm, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenström, J. Engblom, A. Ermedahl,
N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, and R. Heckmann. “The worst-case execution-time
problem - overview of methods and survey of tools”. In: ACM Transactions on Embedded Computing Systems 7.3
(Apr. 2008), pp. 1–53. ISSN: 15399087. DOI: 10.1145/1347375.1347389.

[7] M. Valluri and L. K. John. “Is compiling for performance == compiling for power?” In: Proceedings of the 5th
Annual Workshop on Interaction between Compilers and Computer Architectures. 2001. DOI: 10.1007/978-1-4757-
3337-2_6.

[8] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib. “Compiler-based optimizations impact on embedded software
power consumption”. In: 2009 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference. Ieee,
June 2009, pp. 1–4. ISBN: 978-1-4244-4573-8. DOI: 10.1109/NEWCAS.2009.5290480.

[9] S. V. Gheorghita, H. Corporaal, and T. Basten. “Using iterative compilation to reduce energy consumption”.
In: Proceedings of the 10th Annual Conference of the Advanced School for Computing and Imaging (2004). URL: http:
//www.ics.ele.tue.nl/~epicurus/publications/asci04svg.pdf.

[10] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy. “Code transformations and SIMD impact on embedded software
energy/power consumption”. In: 2009 International Conference on Computer Engineering & Systems. IEEE, Dec.
2009, pp. 27–32. ISBN: 978-1-4244-5842-4. DOI: 10.1109/ICCES.2009.5383317.

[11] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. “Instruction level power analysis and optimization of
software”. In: Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 13.2-3 (1996), pp. 223–
238. ISSN: 0922-5773. DOI: 10.1007/BF01130407.

[12] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. “An accurate and fine grain instruction-level energy
model supporting software optimizations”. In: Proceedings of PATMOS. 2001. URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.21.6971%5C&rep=rep1%5C&type=pdf.

[13] S. Kerrison and K. Eder. “Energy Modeling of Software for a Hardware Multithreaded Embedded Micropro-
cessor”. In: ACM Transactions on Embedded Computing Systems 14.3 (Apr. 2015), pp. 1–25. ISSN: 15399087. DOI:
10.1145/2700104.

[14] Y.-H. Park, S. Pasricha, F. J. Kurdahi, and N. D. Dutt. “A Multi-Granularity Power Modeling Methodology
for Embedded Processors”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19.4 (Apr. 2011),
pp. 668–681. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2009.2039153.

[15] U. Liqat, S. Kerrison, S. Alejandro, K. Giorgiou, P. Lopez-Garcia, N. Grech, M. V. Hermenegildo, and K. Eder.
“Energy Consumption Analysis of Programs Based on XMOS ISA-Level Models”. In: 23rd International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR’13). Ed. by G. Gupta and R. Peña. Vol. 8901. Lecture
Notes in Computer Science. Cham: Springer International Publishing, Sept. 2014. ISBN: 978-3-319-14124-4. DOI:
10.1007/978-3-319-14125-1.

[16] R. Jayaseelan and T. Mitra. “Estimating the Worst-Case Energy Consumption of Embedded Software”. In: 12th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06). IEEE, 2006, pp. 81–90. ISBN:
0-7695-2516-4. DOI: 10.1109/RTAS.2006.17.

[17] C. Belleudy. “Optimization of Energy Consumption”. In: Real-Time Systems Scheduling 1. Ed. by M. Chetto.
Hoboken, NJ, USA: John Wiley & Sons, Inc., Aug. 2014. Chap. 6, pp. 231–267. ISBN: 9781118984413. DOI: 10.
1002/9781118984413.

http://dx.doi.org/10.1109/ISSCS.2009.5206106
http://dx.doi.org/10.1109/IWV.2000.844527
http://dx.doi.org/10.1007/11753728
http://dx.doi.org/10.1145/502251.502252
http://dx.doi.org/10.1109/CODESS.2004.240826
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/978-1-4757-3337-2_6
http://dx.doi.org/10.1007/978-1-4757-3337-2_6
http://dx.doi.org/10.1109/NEWCAS.2009.5290480
http://www.ics.ele.tue.nl/~epicurus/publications/asci04svg.pdf
http://www.ics.ele.tue.nl/~epicurus/publications/asci04svg.pdf
http://dx.doi.org/10.1109/ICCES.2009.5383317
http://dx.doi.org/10.1007/BF01130407
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.6971%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.6971%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1145/2700104
http://dx.doi.org/10.1109/TVLSI.2009.2039153
http://dx.doi.org/10.1007/978-3-319-14125-1
http://dx.doi.org/10.1109/RTAS.2006.17
http://dx.doi.org/10.1002/9781118984413
http://dx.doi.org/10.1002/9781118984413

112 Bibliography

[18] F. Yao, A. Demers, and S. Shenker. “A scheduling model for reduced CPU energy”. In: Proceedings of IEEE 36th
Annual Foundations of Computer Science. IEEE Comput. Soc. Press, 1995, pp. 374–382. ISBN: 0-8186-7183-1. DOI:
10.1109/SFCS.1995.492493.

[19] Y. S. Shao and D. Brooks. “Energy characterization and instruction-level energy model of Intel’s Xeon Phi
processor”. In: International Symposium on Low Power Electronics and Design (ISLPED). Ieee, Sept. 2013, pp. 389–394.
ISBN: 978-1-4799-1235-3. DOI: 10.1109/ISLPED.2013.6629328.

[20] M. Younis, M. Youssef, and K. Arisha. “Energy-aware routing in cluster-based sensor networks”. In: Proceedings.
10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems.
410. IEEE Comput. Soc, 2002, pp. 129–136. ISBN: 0-7695-1840-0. DOI: 10.1109/MASCOT.2002.1167069.

[21] Y. Lee and S. Kim. “DRAM energy reduction by prefetching-based memory traffic clustering”. In: Proceedings
of the 21st edition of the great lakes symposium on Great lakes symposium on VLSI - GLSVLSI ’11 (2011), p. 103. DOI:
10.1145/1973009.1973031.

[22] L. Chandra and S. Roy. “Estimation of energy consumed by software in processor caches”. In: 2008 IEEE
International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, Apr. 2008, pp. 21–24. ISBN:
978-1-4244-1616-5. DOI: 10.1109/VDAT.2008.4542403.

[23] J. Nunez-Yanez and G. Lore. “Enabling accurate modeling of power and energy consumption in an ARM-
based System-on-Chip”. In: Microprocessors and Microsystems 37.3 (May 2013), pp. 319–332. ISSN: 01419331. DOI:
10.1016/j.micpro.2012.12.004.

[24] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III, K. V. Palem, K. Puttaswamy, and W. F. Wong. “The emerging
power crisis in embedded processors: what can a (poor) compiler do?” In: Proceedings of the 2001 international
conference on Compilers, Architecture, and Synthesis for Embedded Systems. ACM, 2001. ISBN: 1581133995. DOI:
10.1145/502217.502246.

[25] V. Tiwari, S. Malik, and A. Wolfe. “Compilation techniques for low energy: an overview”. In: Proceedings of 1994
IEEE Symposium on Low Power Electronics. IEEE, 1994, pp. 38–39. ISBN: 0-7803-1953-2. DOI: 10.1109/LPE.1994.
573195.

[26] S. Woo, J. Yoon, and J. Kim. “Low-power instruction encoding techniques”. In: SOC Design Conference (2001). URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.9233%5C&rep=rep1%5C&type=pdf.

[27] S. Manne, A. Klauser, and D. Grunwald. “Pipeline gating: speculation control for energy reduction”. In: Proceed-
ings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235) (1998), pp. 132–141. DOI:
10.1109/ISCA.1998.694769.

[28] W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. “Compiler-directed instruction
cache leakage optimization”. In: 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002.
(MICRO-35). Proceedings. (2002), pp. 208–218. DOI: 10.1109/MICRO.2002.1176251.

[29] X. Guan and Y. Fei. “Register file partitioning and recompilation for register file power reduction”. In: ACM
Transactions on Design Automation of Electronic Systems 15.3 (May 2010), pp. 1–30. ISSN: 10844309. DOI: 10.1145/
1754405.1754409.

[30] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: a framework for architectural-level power analysis and
optimizations”. In: Proceedings of the 27th Annual International Symposium on Computer Architecture (2000). DOI:
10.1145/342001.339657.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A tool to understand large caches. Tech. rep.
University of Utah, 2009. URL: http://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf.

[32] J. Pallister, S. Hollis, and J. Bennett. “BEEBS: Open Benchmarks for Energy Measurements on Embedded
Platforms”. 2013. URL: http://arxiv.org/abs/1308.5174.

[33] J. Pallister, S. J. Hollis, and J. Bennett. “Identifying Compiler Options to Minimize Energy Consumption for
Embedded Platforms”. In: The Computer Journal 58.1 (Nov. 2013), pp. 95–109. ISSN: 0010-4620. DOI: 10.1093/
comjnl/bxt129.

[34] J. Pallister, K. Eder, S. J. Hollis, and J. Bennett. “A high-level model of embedded flash energy consumption”. In:
Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for Embedded Systems - CASES
’14. New York, New York, USA: ACM Press, 2014, pp. 1–9. ISBN: 9781450330503. DOI: 10.1145/2656106.2656108.

[35] J. Pallister, K. Eder, and S. J. Hollis. “Optimizing the flash-RAM energy trade-off in deeply embedded systems”.
In: 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) abs/1406.0 (Feb. 2015),
pp. 115–124. DOI: 10.1109/CGO.2015.7054192. arXiv: 1406.0403.

[36] Xilinx. Xilinx Software Development Kit (SDK) User Guide. Tech. rep. Xilinx, 2014.

[37] J. Constantin, A. Bonetti, A. Teman, L. Duch, P. Garcia, and D. Atienza. SCoRPiO Project - D4.4: Mechanisms for
runtime fault detection and software controlled hardware reconfiguration. Tech. rep. EPFL, 2015.

[38] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and A. Burg. “Exploiting Dynamic Timing Margins
in Microprocessors for Frequency-Over-Scaling with Instruction-Based Clock Adjustment”. In: Proceedings of the
2015 Design, Automation & Test in Europe. 2015, pp. 381–386. ISBN: 9783981537048.

PhD Thesis James Pallister

http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1109/ISLPED.2013.6629328
http://dx.doi.org/10.1109/MASCOT.2002.1167069
http://dx.doi.org/10.1145/1973009.1973031
http://dx.doi.org/10.1109/VDAT.2008.4542403
http://dx.doi.org/10.1016/j.micpro.2012.12.004
http://dx.doi.org/10.1145/502217.502246
http://dx.doi.org/10.1109/LPE.1994.573195
http://dx.doi.org/10.1109/LPE.1994.573195
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.9233%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1109/ISCA.1998.694769
http://dx.doi.org/10.1109/MICRO.2002.1176251
http://dx.doi.org/10.1145/1754405.1754409
http://dx.doi.org/10.1145/1754405.1754409
http://dx.doi.org/10.1145/342001.339657
http://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf
http://arxiv.org/abs/1308.5174
http://dx.doi.org/10.1093/comjnl/bxt129
http://dx.doi.org/10.1093/comjnl/bxt129
http://dx.doi.org/10.1145/2656106.2656108
http://dx.doi.org/10.1109/CGO.2015.7054192
http://arxiv.org/abs/1406.0403

Bibliography 113

[39] P. Wägemann, T. Distler, T. Hönig, V. Sieh, and W. Schröder-preikschat. “GenE : A benchmark generator for
WCET a nalysis”. In: 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015). 2015, pp. 33–
43. DOI: 10.4230/OASIcs.WCET.2015.33.

[40] J. Bennett, S. J. Hollis, K. Eder, O. Ray, J. Pallister, S. Cook, E. Jones, and C. Blackmore. MAGEEC. 2015. URL:
http://mageec.org/.

[41] Free Software Foundation. The GNU Compiler Collection. 2014. URL: http://gcc.gnu.org/.

[42] The LLVM Compiler Infrastructure. URL: http://llvm.org/.

[43] J. Pallister, S. Kerrison, J. Morse, and K. Eder. “Data dependent energy modelling: A worst case perspective”. In:
CoRR abs/1505.0 (2015). URL: http://arxiv.org/abs/1505.03374.

[44] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. “Static analysis of energy consumption
for LLVM IR programs”. In: Proceedings of the 18th International Workshop on Software and Compilers for Embedded
Systems. SCOPES ’15. New York, NY, USA: ACM, 2015, pp. 12–21. ISBN: 978-1-4503-3593-5. DOI: 10.1145/
2764967.2764974.

[45] C.-H. Hsu and U. Kremer. “Compiler-Directed Dynamic CPU Frequency and Voltage Scaling”. In: Designing
Embedded Processors. Ed. by J. Henkel and S. Parameswaran. Springer Netherlands, 2007, pp. 305–323. DOI:
10.1007/978-1-4020-5869-1_14.

[46] M. R. Guthaus and J. S. Ringenberg. “MiBench: A free, commercially representative embedded benchmark suite”.
In: IEEE International Workshop on Workload Characterization (WWC-4). 2001, pp. 3–14. DOI: 10.1109/WWC.2001.15.

[47] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf. “MediaBench II video: Expediting the next generation of
video systems research”. In: Microprocessors and Microsystems 33.4 (June 2009), pp. 301–318. ISSN: 01419331. DOI:
10.1016/j.micpro.2009.02.010.

[48] J. J. Dongarra, P. Luszczek, and A. Petitet. “The LINPACK Benchmark: past, present and future”. In: Concurrency
and Computation: Practice and Experience 15.9 (Aug. 2003), pp. 803–820. ISSN: 1532-0626. DOI: 10.1002/cpe.728.

[49] R. P. Weicker. “Dhrystone benchmark: rationale for version 2 and measurement rules”. In: ACM SIGPLAN Notices
23.8 (1988). DOI: 10.1145/47907.47911.

[50] EEMBC. ULPBench. 2014. URL: http://www.eembc.org/ulpbench/.

[51] C. Bienia, S. Kumar, and K. Li. “PARSEC vs. SPLASH-2: A quantitative comparison of two multithreaded
benchmark suites on Chip-Multiprocessors”. In: Workload Characterization, 2008. IISWC 2008. IEEE International
Symposium on (Oct. 2008), pp. 47–56. DOI: 10.1109/IISWC.2008.4636090.

[52] G. Fursin et al. “Milepost GCC: machine learning enabled self-tuning compiler”. In: International Journal of Parallel
Programming (2011), pp. 1–31. URL: http://www.springerlink.com/index/D753R27550257252.pdf.

[53] S. M. Z. Iqbal, Y. Liang, and H. Grahn. “ParMiBench - An Open-Source Benchmark for Embedded Multiprocessor
Systems”. In: IEEE Computer Architecture Letters 9.2 (Feb. 2010), pp. 45–48. ISSN: 1556-6056. DOI: 10.1109/L-
CA.2010.14.

[54] M. Weiland and N. Johnson. “Benchmarking for power consumption monitoring”. In: Computer Science - Research
and Development 30.2 (July 2014), pp. 155–163. ISSN: 1865-2034. DOI: 10.1007/s00450-014-0260-1.

[55] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr. “DSPstone: A DSP-oriented benchmarking methodology”.
In: Proc. of ICSPAT. 1994, pp. 715–720.

[56] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. “The Mälardalen WCET benchmarks, past, present and
future”. In: Proceedings of the 10th International Workshop on Worst-Case Execution Time Analysis. 2010. DOI: 10.
4230/OASIcs.WCET.2010.136.

[57] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and T. Noll. “Hybrid functional- and instruction-
level power modeling for embedded and heterogeneous processor architectures”. In: Journal of Systems Architecture
53.10 (Oct. 2007), pp. 689–702. ISSN: 13837621. DOI: 10.1016/j.sysarc.2007.01.002.

[58] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. “An accurate instruction-level energy consumption model for
embedded risc processors”. In: ACM SIGPLAN Notices (2001). URL: http://dl.acm.org/citation.cfm?id=
384201.

[59] H.-h. S. Lee, J. B. Fryman, A. U. Diril, and Y. S. Dhillon. “The elusive metric for low-power architecture research”.
In: Proceedings of the Workshop on Complexity-Effective Design. 2003. URL: http://arch.ece.gatech.edu/pub/
wced03.pdf.

[60] R. Gonzalez and M. Horowitz. “Energy dissipation in general purpose processors”. In: 1995 IEEE Symposium on
Low Power Electronics. Digest of Technical Papers. IEEE, 1995, pp. 12–13. ISBN: 0-7803-3036-6. DOI: 10.1109/LPE.
1995.482411.

[61] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Vandyke, and C. Vaughan. “Energy Delay Product”.
In: Energy-Efficient High Performance Computing. SpringerBriefs in Computer Science, 2013, pp. 51–55. ISBN:
978-1-4471-4491-5. DOI: 10.1007/978-1-4471-4492-2_8.

James Pallister PhD Thesis

http://dx.doi.org/10.4230/OASIcs.WCET.2015.33
http://mageec.org/
http://gcc.gnu.org/
http://llvm.org/
http://arxiv.org/abs/1505.03374
http://dx.doi.org/10.1145/2764967.2764974
http://dx.doi.org/10.1145/2764967.2764974
http://dx.doi.org/10.1007/978-1-4020-5869-1_14
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1016/j.micpro.2009.02.010
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1145/47907.47911
http://www.eembc.org/ulpbench/
http://dx.doi.org/10.1109/IISWC.2008.4636090
http://www.springerlink.com/index/D753R27550257252.pdf
http://dx.doi.org/10.1109/L-CA.2010.14
http://dx.doi.org/10.1109/L-CA.2010.14
http://dx.doi.org/10.1007/s00450-014-0260-1
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.1016/j.sysarc.2007.01.002
http://dl.acm.org/citation.cfm?id=384201
http://dl.acm.org/citation.cfm?id=384201
http://arch.ece.gatech.edu/pub/wced03.pdf
http://arch.ece.gatech.edu/pub/wced03.pdf
http://dx.doi.org/10.1109/LPE.1995.482411
http://dx.doi.org/10.1109/LPE.1995.482411
http://dx.doi.org/10.1007/978-1-4471-4492-2_8

114 Bibliography

[62] Z. Chen, X. Liu, R. Zhang, and H. Liu. “An Automotive Electronic Throttle Testing Equipment Based on
STM32”. In: 2014 International Symposium on Computer, Consumer and Control (June 2014), pp. 478–481. DOI:
10.1109/IS3C.2014.131.

[63] A. E. Kalman. Hardware and software design of an MSP430-based satellite using an RTOS. Tech. rep. Texas Instruments,
2004, pp. 1–46.

[64] A. Huang and S. Cross. Novena Battery Board. 2014. URL: http://www.kosagi.com/w/index.php?title=
Novena%5C_Main%5C_Page%5C#Battery%5C_board.

[65] P. Lepek. Designing next-generation key fobs. Tech. rep. Atmel, 2010, pp. 15–20. URL: http://www.atmel.com/
Images/Article%5C_AC7%5C_Designing-Next-Generation-Key-Fobs.pdf.

[66] B. Smith. “ARM and Intel Battle over the Mobile Chip’s Future”. In: Computer 41.5 (May 2008), pp. 15–18. ISSN:
0018-9162. DOI: 10.1109/MC.2008.142.

[67] R. Rebe. Openbench. 2012. URL: http://www.exactcode.com/site/open%5C_source/openbench/.

[68] J. L. Henning. “SPEC CPU2006 benchmark descriptions”. In: ACM SIGARCH Computer Architecture News 34.4
(Sept. 2006), pp. 1–17. ISSN: 01635964. DOI: 10.1145/1186736.1186737.

[69] ARM Limited. “Cortex-M0 Technical Reference Manual”. In: (2009).

[70] J. Yiu. The Definitive Guide to the ARM Cortex-M3. 2nd. Newnes, 2010. ISBN: 978-1-85617-963-8.

[71] Atmel. Atmel 8-bit Microcontroller. 2013.

[72] Atmel. Atmel AVR1923: XMEGA-A3BU Xplained Hardware User Guide. Tech. rep. 2012, pp. 1–19.

[73] Microchip. PIC32MX Family. Tech. rep. 2012, pp. 1–64.

[74] Texas Instruments. MSP430F5529 Mixed signal Microcontroller. Tech. rep. March 2009. 2013.

[75] Texas Instruments. MSP430FR5739 Mixed-Signal Microcontroller. Tech. rep. 2014.

[76] Y. Kato, H. Tanaka, K. Isogai, K. Kaibara, Y. Kaneko, Y. Shimada, M. Brubaker, J. Celinska, L. D. McMillan, and
C. A. P. de Araujo. “Embedded FeRAM Challenges in the 65-nm Technology Node and Beyond”. In: 2006 IEEE
International Symposium on the Applications of Ferroelectrics. IEEE, July 2006, pp. 81–84. ISBN: 978-1-4244-1331-7.
DOI: 10.1109/ISAF.2006.4387838.

[77] G. Coley. BeagleBone Rev A3 System Reference Manual. 2011. URL: http://download.tigal.com/beagle/
BeagleBone%5C_SRM%5C_A6%5C_0%5C_1.pdf.

[78] Texas Instruments. AM335x ARM Cortex-A8 Microprocessors. 2012.

[79] Adapteva. E16G301 Epiphany 16-core microprocessor datasheet. 2013. URL: http://www.adapteva.com/wp-
content/uploads/2013/06/e16g301%5C_datasheet%5C_3.13.6.14.pdf.

[80] D. May. The XMOS XS1 Architecture. ISBN: 9781907361012.

[81] P. A. Kulkarni, D. B. Whalley, and G. S. Tyson. “Evaluating Heuristic Optimization Phase Order Search Algo-
rithms”. In: International Symposium on Code Generation and Optimization (CGO’07). IEEE, Mar. 2007, pp. 157–169.
ISBN: 0-7695-2764-7. DOI: 10.1109/CGO.2007.9.

[82] R. Eigenmann. “Fast and Effective Orchestration of Compiler Optimizations for Automatic Performance Tuning”.
In: International Symposium on Code Generation and Optimization (CGO’06). ii. IEEE, 2006, pp. 319–332. ISBN:
0-7695-2499-0. DOI: 10.1109/CGO.2006.38.

[83] E. Schkufza, R. Sharma, and A. Aiken. “Stochastic superoptimization”. In: Architectural Support for Programming
Languages and Operating Systems. New York, New York, USA: ACM Press, 2013, p. 305. ISBN: 9781450318709. DOI:
10.1145/2451116.2451150.

[84] K. Chow and Y. Wu. “Feedback-directed selection and characterization of compiler optimizations”. In: Proceedings
of the Second Workshop on Feedback-Directed Optimization. 1999, pp. 1–10. URL: http://cseweb.ucsd.edu/users/
calder/fdo/fdo2/papers/fdo2-wu.ps.

[85] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters: An Introduction to Design, Data Analysis,
and Model Building. John Wiley & Sons, 1978, pp. 374–418. ISBN: 0-471-09315-7.

[86] S.-c. Lin, C.-k. Chang, and N.-w. Lin. “Automatic selection of GCC optimization options using a gene weighted
genetic algorithm”. In: Computer Systems Architecture Conference, 2008. ACSAC 2008. 13th Asia-Pacific (Aug. 2008),
pp. 1–8. DOI: 10.1109/APCSAC.2008.4625477.

[87] K. D. Cooper, P. J. Schielke, and D. Subramanian. “Optimizing for reduced code space using genetic algorithms”.
In: Proceedings of the ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for embedded systems - LCTES
’99. New York, New York, USA: ACM Press, 1999, pp. 1–9. ISBN: 1581131364. DOI: 10.1145/314403.314414.

[88] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. “Compiler techniques for code compaction”. In: ACM
Transactions on Programming Languages and Systems 22.2 (Mar. 2000), pp. 378–415. ISSN: 01640925. DOI: 10.1145/
349214.349233.

PhD Thesis James Pallister

http://dx.doi.org/10.1109/IS3C.2014.131
http://www.kosagi.com/w/index.php?title=Novena%5C_Main%5C_Page%5C#Battery%5C_board
http://www.kosagi.com/w/index.php?title=Novena%5C_Main%5C_Page%5C#Battery%5C_board
http://www.atmel.com/Images/Article%5C_AC7%5C_Designing-Next-Generation-Key-Fobs.pdf
http://www.atmel.com/Images/Article%5C_AC7%5C_Designing-Next-Generation-Key-Fobs.pdf
http://dx.doi.org/10.1109/MC.2008.142
http://www.exactcode.com/site/open%5C_source/openbench/
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/ISAF.2006.4387838
http://download.tigal.com/beagle/BeagleBone%5C_SRM%5C_A6%5C_0%5C_1.pdf
http://download.tigal.com/beagle/BeagleBone%5C_SRM%5C_A6%5C_0%5C_1.pdf
http://www.adapteva.com/wp-content/uploads/2013/06/e16g301%5C_datasheet%5C_3.13.6.14.pdf
http://www.adapteva.com/wp-content/uploads/2013/06/e16g301%5C_datasheet%5C_3.13.6.14.pdf
http://dx.doi.org/10.1109/CGO.2007.9
http://dx.doi.org/10.1109/CGO.2006.38
http://dx.doi.org/10.1145/2451116.2451150
http://cseweb.ucsd.edu/users/calder/fdo/fdo2/papers/fdo2-wu.ps
http://cseweb.ucsd.edu/users/calder/fdo/fdo2/papers/fdo2-wu.ps
http://dx.doi.org/10.1109/APCSAC.2008.4625477
http://dx.doi.org/10.1145/314403.314414
http://dx.doi.org/10.1145/349214.349233
http://dx.doi.org/10.1145/349214.349233

Bibliography 115

[89] A. Nisbet. “GAPS : Genetic Algorithm Optimised Parallelisation”. In: Proc. Workshop on Profile and Feedback
Directed Compilation. 1998. DOI: 10.1007/BFb0037253.

[90] N. Azeemi. “Multicriteria Energy Efficient Source Code Compilation for Dependable Embedded Applications”.
In: 2006 Innovations in Information Technology. IEEE, Nov. 2006, pp. 1–5. ISBN: 1-4244-0673-0. DOI: 10.1109/
INNOVATIONS.2006.301963.

[91] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer. “Post-compiler software optimization for reducing
energy”. In: Proceedings of the 19th international conference on Architectural support for programming languages and
operating systems - ASPLOS ’14 (2014), pp. 639–652. DOI: 10.1145/2541940.2541980.

[92] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam. “Rapidly Selecting Good Compiler
Optimizations using Performance Counters”. In: International Symposium on Code Generation and Optimization
(CGO’07). Ieee, Mar. 2007, pp. 185–197. ISBN: 0-7695-2764-7. DOI: 10.1109/CGO.2007.32.

[93] S. Kulkarni and J. Cavazos. “Mitigating the compiler optimization phase-ordering problem using machine
learning”. In: Proceedings of the ACM international conference on Object oriented programming systems languages and
applications (2012), pp. 1–16. URL: http://dl.acm.org/citation.cfm?id=2384616.2384628.

[94] K. O. Stanley and R. Miikkulainen. “Efficient Reinforcement Learning through Evolving Neural Network
Topologies”. In: Genetic and Evolutionary Computation Conference. New York, NY, USA, 2002, pp. 569–577.

[95] G. Magklis, M. Scott, and D. Albonesi. “The energy impact of aggressive loop fusion”. In: Proceedings. 13th
International Conference on Parallel Architecture and Compilation Techniques, 2004. PACT 2004. IEEE, 2004, pp. 153–164.
ISBN: 0-7695-2229-7. DOI: 10.1109/PACT.2004.1342550.

[96] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Marwedel. “Reducing energy
consumption by dynamic copying of instructions onto onchip memory”. In: Proceedings of the 15th international
symposium on System Synthesis - ISSS ’02. New York, New York, USA: ACM Press, 2002, p. 213. ISBN: 1581135769.
DOI: 10.1145/581199.581247.

[97] Y. Ishitobi, T. Ishihara, and H. Yasuura. “Code and Data Placement for Embedded Processors with Scratchpad
and Cache Memories”. In: Journal of Signal Processing Systems 60.2 (Nov. 2008), pp. 211–224. ISSN: 1939-8018. DOI:
10.1007/s11265-008-0306-3.

[98] D. A. Ortiz and N. G. Santiago. “Impact of source code optimizations on power consumption of embedded
systems”. In: 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference
(June 2008), pp. 133–136. DOI: 10.1109/NEWCAS.2008.4606339.

[99] C. F. J. Wu and M. Hamada. Experiments: Planning, analysis, and parameter design optimization. New York: Wiley,
2000, p. 112. ISBN: 978-0471255116.

[100] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson. “Practical exhaustive optimization phase order
exploration and evaluation”. In: ACM Transactions on Architecture and Code Optimization 6.1 (Mar. 2009), pp. 1–36.
ISSN: 15443566. DOI: 10.1145/1509864.1509865.

[101] ARM Limited. Cortex-M3 Technical Reference Manual. 2006.

[102] O. Zendra. “Memory and compiler optimizations for low-power and -energy”. In: (Oct. 2006). arXiv: 0610028
[cs]. URL: http://arxiv.org/abs/cs/0610028.

[103] C.-h. Hsu and U. Kremer. “The design, implementation, and evaluation of a compiler algorithm for CPU energy
reduction”. In: ACM SIGPLAN Notices 38.5 (May 2003), p. 38. ISSN: 03621340. DOI: 10.1145/780822.781137.

[104] D. Zhurikhin, A. Belevantsev, and A. Avetisyan. “Evaluating power-aware optimizations within GCC compiler”.
In: GCC Research Opportunities Workshop (GROW ’09) (2009). URL: http://www.doc.ic.ac.uk/~phjk/GROW09/
papers/06-PowerBelevantsev.pdf.

[105] K. Zhang, T. Zhang, and S. Pande. “Binary translation to improve energy efficiency through post-pass register
re-allocation”. In: Proceedings of the fourth ACM international conference on Embedded software - EMSOFT ’04. New
York, New York, USA: ACM Press, 2004, p. 74. ISBN: 1581138601. DOI: 10.1145/1017753.1017769.

[106] A. G. M. Cilio and H. Corporaal. “Global Variable Promotion: Using Registers to Reduce Cache Power Dis-
sipation”. In: Compiler Construction. Ed. by R. N. Horspool. Vol. 2304. Lecture Notes in Computer Science.
Springer. Berlin, Heidelberg: Springer Berlin Heidelberg, Mar. 2002, pp. 247–261. ISBN: 978-3-540-43369-9. URL:
http://link.springer.com/10.1007/3-540-45937-5.

[107] P. Petrov and A. Orailoglu. “Compiler-based register name adjustment for low-power embedded processors”. In:
ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486). IEEE, 2003, pp. 523–527.
ISBN: 1-58113-762-1. DOI: 10.1109/ICCAD.2003.159734.

[108] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. “Techniques for low energy software”. In: Proceedings
of the 1997 international symposium on Low power electronics and design - ISLPED ’97. New York, New York, USA:
ACM Press, 1997, pp. 72–75. ISBN: 0897919033. DOI: 10.1145/263272.263286.

[109] H. Tomiyama and T. Ishihara. “Instruction scheduling for power reduction in processor-based system design”.
In: Proceedings of the conference on Design, automation and test in Europe. IEEE, 1998, pp. 855–860. URL: http:
//dl.acm.org/citation.cfm?id=368439.

James Pallister PhD Thesis

http://dx.doi.org/10.1007/BFb0037253
http://dx.doi.org/10.1109/INNOVATIONS.2006.301963
http://dx.doi.org/10.1109/INNOVATIONS.2006.301963
http://dx.doi.org/10.1145/2541940.2541980
http://dx.doi.org/10.1109/CGO.2007.32
http://dl.acm.org/citation.cfm?id=2384616.2384628
http://dx.doi.org/10.1109/PACT.2004.1342550
http://dx.doi.org/10.1145/581199.581247
http://dx.doi.org/10.1007/s11265-008-0306-3
http://dx.doi.org/10.1109/NEWCAS.2008.4606339
http://dx.doi.org/10.1145/1509864.1509865
http://arxiv.org/abs/0610028
http://arxiv.org/abs/0610028
http://arxiv.org/abs/cs/0610028
http://dx.doi.org/10.1145/780822.781137
http://www.doc.ic.ac.uk/~phjk/GROW09/papers/06-PowerBelevantsev.pdf
http://www.doc.ic.ac.uk/~phjk/GROW09/papers/06-PowerBelevantsev.pdf
http://dx.doi.org/10.1145/1017753.1017769
http://link.springer.com/10.1007/3-540-45937-5
http://dx.doi.org/10.1109/ICCAD.2003.159734
http://dx.doi.org/10.1145/263272.263286
http://dl.acm.org/citation.cfm?id=368439
http://dl.acm.org/citation.cfm?id=368439

116 Bibliography

[110] M. C. Toburen, T. M. Conte, and M. Reilly. “Instruction scheduling for low power dissipation in high performance
microprocessors”. In: Proceedings of the 1998 Power Driven Micro-architecture Workshop. 1998. URL: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.2534%5C&rep=rep1%5C&type=pdf.

[111] A. W. Min, R. Wang, J. Tsai, M. A. Ergin, and T.-Y. C. Tai. “Improving energy efficiency for mobile platforms by
exploiting low-power sleep states”. In: Proceedings of the 9th conference on Computing Frontiers - CF ’12. New York,
New York, USA: ACM Press, 2012, p. 133. ISBN: 9781450312158. DOI: 10.1145/2212908.2212928.

[112] V. Venkatachalam and M. Franz. “Power reduction techniques for microprocessor systems”. In: ACM Computing
Surveys 37.3 (Sept. 2005), pp. 195–237. ISSN: 03600300. DOI: 10.1145/1108956.1108957.

[113] L. Wehmeyer and P. Marwedel. “Scratchpad Memory Optimizations”. In: Fast , Efficient and Predictable Memory
Accesses: Optimization Algorithms for Memory Architecture Compilation. 1st ed. Dordrecht, The Netherlands: Springer
Netherlands, 2006. Chap. 4, pp. 89–169. ISBN: 1402048211.

[114] S. Steinke, L. Wehmeyer, and P. Marwedel. “Assigning program and data objects to scratchpad for energy
reduction”. In: Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition. IEEE Comput. Soc,
2002, pp. 409–415. ISBN: 0-7695-1471-5. DOI: 10.1109/DATE.2002.998306.

[115] M. Kandemir, I. Kadayif, and U. Sezer. “Exploiting scratch-pad memory using Presburger formulas”. In: Proceed-
ings of the 14th international symposium on Systems synthesis - ISSS ’01 (2001), p. 7. DOI: 10.1145/500002.500004.

[116] L. Gauthier, T. Ishihara, H. Takase, H. Tomiyama, and H. Takada. “Minimizing inter-task interferences in scratch-
pad memory usage for reducing the energy consumption of multi-task systems”. In: Proceedings of the 2010
international conference on Compilers, architectures and synthesis for embedded systems - CASES ’10. New York, New
York, USA: ACM Press, 2010, p. 157. ISBN: 9781605589039. DOI: 10.1145/1878921.1878945.

[117] M. Kandemir, I. Kadayif, A. Choudhary, J. Ramanujam, and I. Kolcu. “Compiler-directed scratch pad memory
optimization for embedded multiprocessors”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
12.3 (Mar. 2004), pp. 281–287. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2004.824299.

[118] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. “EnerJ: Approximate Data
Types for Safe and General Low-Power Computation”. In: Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation - PLDI ’11. New York, New York, USA: ACM Press, 2011, p. 164.
ISBN: 9781450306638. DOI: 10.1145/1993498.1993518.

[119] A. a. Eltawil, M. Engel, B. Geuskens, A. K. Djahromi, F. J. Kurdahi, P. Marwedel, S. Niar, and M. a.R. Saghir. “A
survey of cross-layer power-reliability tradeoffs in multi and many core systems-on-chip”. In: Microprocessors and
Microsystems 37.8 (Nov. 2013), pp. 760–771. ISSN: 01419331. DOI: 10.1016/j.micpro.2013.07.008.

[120] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K. Wolf. “Characterizing
flash memory: Anomalies, Observations, and Applications”. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture - Micro-42. New York, New York, USA: ACM Press, 2009, p. 24. ISBN:
9781605587981. DOI: 10.1145/1669112.1669118.

[121] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson. “Modeling Power Consumption of
NAND Flash Memories Using FlashPower”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 32.7 (July 2013), pp. 1031–1044. ISSN: 0278-0070. DOI: 10.1109/TCAD.2013.2249557.

[122] S. Kim, K. Kwon, C. Kim, C. Jang, J. Lee, and S. L. Min. “Demand Paging Techniques for Flash Memory Using
Compiler Post-Pass Optimizations”. In: ACM Transactions on Embedded Computing Systems 10.4 (Nov. 2011),
pp. 1–29. ISSN: 15399087. DOI: 10.1145/2043662.2043664.

[123] H.-w. Park, S. Park, and M.-m. Sim. “Dynamic Code Overlay of SDF-Modeled Programs on Low-end Embedded
Systems”. In: Proceedings of the Design Automation & Test in Europe Conference (2006), pp. 1–2. DOI: 10.1109/DATE.
2006.243836.

[124] ARM Limited. What are Overlays and how are they used? 2011. URL: http://infocenter.arm.com/help/topic/
com.arm.doc.faqs/ka4234.html.

[125] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. “Drowsy caches: simple techniques for reducing
leakage power”. In: Proceedings 29th Annual International Symposium on Computer Architecture. IEEE Comput. Soc,
2002, pp. 148–157. ISBN: 0-7695-1605-X. DOI: 10.1109/ISCA.2002.1003572.

[126] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement”. In: ACM SIGPLAN Notices 33.11
(Nov. 1998), pp. 139–149. ISSN: 03621340. DOI: 10.1145/291006.291036.

[127] Zeptobars. STM32F103VGT6 : Weekend die-shot. 2012. URL: http://zeptobars.ru/en/read/STM-STM32F103VGT6.

[128] P. Cavaleri, B. Leconte, S. Zink, and J. Devin. Page-erasable flash memory. 2004.

[129] STMicroelectronics. High density NAND flash memories. 2005.

[130] D. Brylow, N. Damgaard, and J. Palsberg. “Static checking of interrupt-driven software”. In: Proceedings of the 23rd
International Conference on Software Engineering. ICSE 2001. IEEE Comput. Soc, 2001, pp. 47–56. ISBN: 0-7695-1050-7.
DOI: 10.1109/ICSE.2001.919080.

PhD Thesis James Pallister

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.2534%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.2534%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1145/2212908.2212928
http://dx.doi.org/10.1145/1108956.1108957
http://dx.doi.org/10.1109/DATE.2002.998306
http://dx.doi.org/10.1145/500002.500004
http://dx.doi.org/10.1145/1878921.1878945
http://dx.doi.org/10.1109/TVLSI.2004.824299
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1016/j.micpro.2013.07.008
http://dx.doi.org/10.1145/1669112.1669118
http://dx.doi.org/10.1109/TCAD.2013.2249557
http://dx.doi.org/10.1145/2043662.2043664
http://dx.doi.org/10.1109/DATE.2006.243836
http://dx.doi.org/10.1109/DATE.2006.243836
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4234.html
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4234.html
http://dx.doi.org/10.1109/ISCA.2002.1003572
http://dx.doi.org/10.1145/291006.291036
http://zeptobars.ru/en/read/STM-STM32F103VGT6
http://dx.doi.org/10.1109/ICSE.2001.919080

Bibliography 117

[131] Free Software Foundation. GNU Linear Programming Kit, Version 4.52. 2014. URL: http://www.gnu.org/
software/glpk/glpk.html.

[132] Y. Joo, Y. Cho, D. Shin, J. Park, and N. Chang. “An energy characterization platform for memory devices and
energy-aware data compression for multilevel-cell flash memory”. In: ACM Transactions on Design Automation of
Electronic Systems 13.3 (July 2008), pp. 1–29. ISSN: 10844309. DOI: 10.1145/1367045.1367052.

[133] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M. Tullsen. “Tuning compiler optimizations for simultaneous
multithreading”. In: Proceedings of 30th Annual International Symposium on Microarchitecture. IEEE Comput. Soc,
1997, pp. 114–124. ISBN: 0-8186-7977-8. DOI: 10.1109/MICRO.1997.645803.

[134] ARM Limited. big.LITTLE Technology : The Future of Mobile Same architecture but different micro-architectures. Tech.
rep. ARM Limited, 2013, pp. 1–12. URL: http://www.arm.com/files/pdf/big%5C_LITTLE%5C_Technology%
5C_the%5C_Futue%5C_of%5C_Mobile.pdf.

[135] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. 2nd ed. Addison-Wesley,
2007, pp. 583–706.

[136] S. S. Muchnick. Advanced Compiler Design and Implementation. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997. ISBN: 1-55860-320-4.

[137] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. “Conversion of control dependence to data dependence”.
In: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’83.
New York, New York, USA: ACM Press, 1983, pp. 177–189. ISBN: 0897910907. DOI: 10.1145/567067.567085.

[138] P. Bonzini and L. Pozzi. “Code transformation strategies for extensible embedded processors”. In: Proceedings
of the 2006 international conference on Compilers, architecture and synthesis for embedded systems - CASES ’06 (2006),
p. 242. DOI: 10.1145/1176760.1176791.

[139] Free Software Foundation. GCC: Options that control optimization. 2014. URL: https://gcc.gnu.org/onlinedocs/
gcc-4.9.1/gcc/Optimize-Options.html.

[140] A. Tal. “Second-Order Predictive Commoning”. In: 3rd Workshop on Compiler-Driven Performance. Markham, ON,
USA, 2004. URL: https://webdocs.cs.ualberta.ca/~amaral/cascon/CDP04/slides/tal.pdf.

James Pallister PhD Thesis

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://dx.doi.org/10.1145/1367045.1367052
http://dx.doi.org/10.1109/MICRO.1997.645803
http://www.arm.com/files/pdf/big%5C_LITTLE%5C_Technology%5C_the%5C_Futue%5C_of%5C_Mobile.pdf
http://www.arm.com/files/pdf/big%5C_LITTLE%5C_Technology%5C_the%5C_Futue%5C_of%5C_Mobile.pdf
http://dx.doi.org/10.1145/567067.567085
http://dx.doi.org/10.1145/1176760.1176791
https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc/Optimize-Options.html
https://webdocs.cs.ualberta.ca/~amaral/cascon/CDP04/slides/tal.pdf

118

This page is intentionally blank.This page is intentionally blank.This page is intentionally blank.

Index

A
address space, 68
autovectorisation, 94

B
basic block alignment, 63
BEEBS, 15–22
benchmarks, 15–19

C
code alignment, 45
code size, 1, 24, 27, 29, 45
constant pool, 69
contributions, 3

D
debugging, 30
DVFS, 28, 46

E
energy consumption

measurement, 11
energy model

flash, 54–58
parameters, 58

energy optimisations, 46–50

F
flash, 50–66

structure, 51, 94
wait states, 94

fractional factorial design, 26, 32–34, 81–83
FRAM, 54

G
genetic algorithms, 26, 39–41, 84–86

I
instruction distributions, 19
instruction fetch, 55
integer linear programming, 46
iteration estimation, 74
iterative compilation, 26

L
loop alignment, 62, 63

M
machine learning, 26, 95

linear regression, 58
mann-whitney U test, 34
metrics

average power, 7, 14
energy consumption, 7, 14
energy-delay product, 14
execution time, 7, 13
peak power, 15

MILEPOST, 27
multithreading, 94

N
NAND flash, 51

O
optimisation interactions, 23–25, 32, 81, 84,

85, 95
optimisation level, 23, 29
optimisation selection, 31–39
optimisations

branch chaining, 99
constant folding, 99
constant propagation, 36, 99
copy propagation, 36, 100
CSE, 23, 24, 99
dead code elimination, 27, 100
DVFS, 46
expression simplification, 36, 100
flash loop alignment, 60
function inlining, 23, 24, 101
if-conversion, 101
instruction scheduling, 35, 102
instruction selection, 47
jump threading, 36, 102
loop

fusion, 102
header copying, 103
interchange, 103
invariant motion, 83, 103
tiling, 104
unrolling, 104
unswitching, 104

omit frame pointer, 34, 37, 43, 105

120 Index

predictive commoning, 105
redundancy elimination, 36, 38, 45, 106
register renaming, 47
reorder blocks, 101
resource scheduling, 48
scheduling, 31, 47
scratchpad memory, 48
sleep modes, 48
strength reduction, 47, 106
tree-dominator-opts, 36

overlay, 66–73

P
pareto frontier, 77

prefetch buffer, 60

R
RAM, 66
register allocation, 35
register pressure, 37, 47, 105

S
scratchpad memories, 1, 48, 49
sleep modes, 48
source code features, 18

W
worst case execution time, 18

PhD Thesis James Pallister

	List of Tables
	List of Figures
	List of Publications
	Introduction
	Context
	Contributions
	Thesis structure

	The effect of compiler optimisations on energy and time
	Research questions

	Benchmarking
	Background
	Metrics

	Measurement
	Platforms
	BEEBS
	Benchmarks
	Evaluation
	Summary

	Optimisations designed for execution time
	Introduction
	Optimisation combinations

	Background
	Optimisation selection
	Machine learning
	Optimisation ordering
	Individual optimisations

	Optimisation levels
	Individual optimisation exploration
	Fractional factorial design
	Individual optimisation analysis
	Optimisation combination analysis

	Choosing optimisations using genetic algorithms
	Genetic algorithms
	Fitness functions
	Results

	Conclusion

	Optimisations designed for energy consumption
	Introduction
	Background
	Embedded flash memory
	Energy model
	Optimisation

	RAM Overlay
	Implementation
	Program energy model
	Results

	Conclusion
	Code alignment
	RAM overlay
	Energy effect and research questions

	Combining optimisations
	Fractional factorial design
	Results

	Known good sets
	Genetic algorithms
	Conclusion

	Conclusion
	Existing compiler optimisations
	Optimisations for energy
	Code alignment
	RAM overlay

	Combining optimisations for time and optimisations for energy
	Future work
	Further research questions
	Future research direction

	Appendices
	Optimisation Reference
	Datasets
	Glossary
	Bibliography
	Index

