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Motivation

Compiler optimizations are claimed to have a large impact on
software:

- Performance
- Energy

No extensive study prior to this considering:

- Different benchmarks
- Many individual optimizations
- Different platforms

This work looks at the effect of many different optimizations
across 10 benchmarks and 5 platforms.

238 Optimization passes covered by 150 flags
- Huge amount of combinations

Bl University of | ® ‘
BRISTOL ECOSM



This Talk

e This talk will cover:

- Importance of benchmarks
- How to explore 22150 combinations of options

- Demo
- Correlation between time and energy
- How to predict the effect of the optimizations

- The best optimizations
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Importance of Benchmarks

 One benchmark can't < Broad categories to

trigger all be considered for a
optimizations benchmark:

e Perform differently on - Integer
different platforms - Floating point

* Need a range of - Branching
benchmarks - Memory
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Our Benchmark List

Name Sowrce B M I FP T License Category

Blowfish MiBench L M H L  Multi GPL security

CRC32 MiBench M L H L Single GPL  network, telecomm
Cubic root solver MiBench L M H L Single GPL  automotive

Dijkstra MiBench M L H L Multi GPL network

FDCT WCET H H L H Single None' consumer

Float Matmult WCET M H M M Single GPL automotive, consumer
Integer Matmult WCET M M H L Single Nonel automotive

Rjindael MiBench H L M L Multi GPL security

SHA MiBench H M M L Multi GPL network, security

2D FIR WCET H M L H Single None' automotive, consumer

Bl University of L ®
BRISTOL ECOSM



Choosing the Platforms

* Range of different features in the platforms
chosen

- Pipeline Depth

- Multi- vs Single- core

- FPU available?

- Caching

— On-chip vs off-chip memory
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Platforms Chosen

ARM Cortex-M0 ARM Cortex-M3

ARM Cortex-A8

XMOS L1

Adapteva
Epiphany

Small memory Small memory

Simple Pipeline Simple Pipeline,
with forwarding
logic, etc.
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Large memory

Complex
superscalar
pipeline

SIMD/FPU

Small memory

Simple pipeline

Multiple threads

On-chip and
off-chip memory

Simple superscalar

pipeline

FPU

16 cores
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Experimental Methodology

« Compiler optimizations have many non-linear
Interactions

» 238 optimization passes combined into 150 different
options (GCC)

« 82 compiler options enabled by O3

 How to test all of these, while accounting for the
Interactions between optimizations?

Fractional Factorial Designs
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Hardware Measurements

Current, voltage and
power monitor

10 kSamples/s
Low noise

XMQOS board to control
and timestamp
measurements

Integrate to get energy
consumption
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Power
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Small resistor
Typically 0.1Q
Processor being
measured
Ground _[_

7 Jeng

=
o
@
«
=
[
=
~
=
-

Absau

:l\

s §

.“ X
)
Fa
/s
y

‘ 3 h




Instrumenting the Hardware

 How to attach the power measurement circuit to the
nardware?

e |nvasive...
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Hardware

INA219 INA219

Host PC
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Software
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Results

* Energy consumption = Execution time
- Generalization, not true in every case
* Optimization unpredictabllity

* NO optimization is universally good across
benchmarks and platforms
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Overview
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Overview

FDCT, Cortex-MO
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Overview
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When Time # Energy

 Complex pipeline
e -ftree-vectorize

- NEON SIMD unit
— Much lower power

O3 Flags, 2DFIR, Cortex-A8
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Conclusion: Mostly, Time = Energy

» Highly correlated » Complex pipelines:
- Especially so for - Still a correlation
'simple' pipelines - But more variabllity
] : - SIMD, superscalar
* Little scope Ifor stalling execution
or suptgrsca ar * To get the most optimal
execution energy consumption we
need better than
“go fast”
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Case Study: Cortex-MO
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What does this mean?

For the Compiler Writer

e Current optimization levels « Current optimizations

(01, O2, etc.) are a good targeted for performances
palance between compile Few (if any) optimizations
time and . '
erformance/energy In current compilers
P - designed to reduce
* Never completely optimal energy consumption
 Machine learning
- MILEPOST

- Genetic algorithms
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What does this mean?

For the embedded developer

» Try the optimization * Power Modes
levels — O3 is a good - Sleep
bet
e Memory
» Use hardware — Closer to the processor
peripherals the better
« SIMD - Exploit RAM
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MILEPOST GCC

f MILEPOST GCC ) ( Continuous Collective A
Program, Compilation Framework (CCC)
ﬁ [ IC Plugins | 4 N —
E. ~ Recording pass Drivers for N
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Conclusion

* Time = Energy
- True for simple pipelines

- Mostly true for complex pipelines
- Good approximation

* Optimization unpredictability
- Difficult to model the interactions between optimizations
« Commonality across platforms

- Instruction set plays a role

- Common options for the ARM platforms, but not
Epiphany
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Questions and Demonstration

jJames.pallister@bristol.ac.uk
simon@cs.bris.ac.uk
jeremy.bennett@embecosm.com

All data at: www.jpallister.com/wiki
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