
1

μImpact of different compiler options
on energy consumption

James Pallister
University of Bristol / Embecosm

Simon Hollis
University of Bristol

Jeremy Bennett
Embecosm

2

μMotivation

● Compiler optimizations are claimed to have a large impact on
software:
– Performance

– Energy

● No extensive study prior to this considering:
– Different benchmarks

– Many individual optimizations

– Different platforms

● This work looks at the effect of many different optimizations
across 10 benchmarks and 5 platforms.

● 238 Optimization passes covered by 150 flags
– Huge amount of combinations

3

μThis Talk

● This talk will cover:
– Importance of benchmarks

– How to explore 2^150 combinations of options

– Demo

– Correlation between time and energy

– How to predict the effect of the optimizations

– The best optimizations

4

μImportance of Benchmarks

● One benchmark can't
trigger all
optimizations

● Perform differently on
different platforms

● Need a range of
benchmarks

● Broad categories to
be considered for a
benchmark:
– Integer

– Floating point

– Branching

– Memory

6

μOur Benchmark List

8

μChoosing the Platforms

● Range of different features in the platforms
chosen
– Pipeline Depth

– Multi- vs Single- core

– FPU available?

– Caching

– On-chip vs off-chip memory

9

μPlatforms Chosen

ARM Cortex-M0 ARM Cortex-M3 ARM Cortex-A8 XMOS L1 Adapteva
Epiphany

Small memory Small memory Large memory Small memory On-chip and
off-chip memory

Simple Pipeline Simple Pipeline,
with forwarding
logic, etc.

Complex
superscalar
pipeline

Simple pipeline Simple superscalar
pipeline

SIMD/FPU FPU

Multiple threads 16 cores

10

μExperimental Methodology

● Compiler optimizations have many non-linear
interactions

● 238 optimization passes combined into 150 different
options (GCC)

● 82 compiler options enabled by O3

● How to test all of these, while accounting for the
interactions between optimizations?

●

Fractional Factorial Designs

15

μHardware Measurements

● Current, voltage and
power monitor

● 10 kSamples/s
● Low noise
● XMOS board to control

and timestamp
measurements

● Integrate to get energy
consumption

Small resistor
Typically 0.1Ω

Processor being
measured

Measurement
chip

Ground

Power
supply

16

μInstrumenting the Hardware

● How to attach the power measurement circuit to the
hardware?

● Invasive...

17

μHardware

USB
USB

USB

I 2 C
I 2 C

XMOS

INA219 INA219

Dev
Kit

Dev
Kit

USB
HubUSB Serial

Adapter USB

Serial

Host PC

18

μSoftware

19

μResults

● Energy consumption ≈ Execution time
– Generalization, not true in every case

● Optimization unpredictability

● No optimization is universally good across
benchmarks and platforms

20

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

21

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

22

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

23

μOverview

28

μWhen Time ≠ Energy

O3 Flags, 2DFIR, Cortex-A8

● Complex pipeline
● -ftree-vectorize

– NEON SIMD unit

– Much lower power

29

μConclusion: Mostly, Time ≈ Energy

● Highly correlated
● Especially so for

'simple' pipelines
● Little scope for stalling

or superscalar
execution

● Complex pipelines:
– Still a correlation

– But more variability

– SIMD, superscalar
execution

● To get the most optimal
energy consumption we
need better than
“go fast”

36

μCase Study: Cortex-M0

Energy in pJ

37

μWhat does this mean?

● Current optimization levels
(O1, O2, etc.) are a good
balance between compile
time and
performance/energy.

● Never completely optimal
● Machine learning

– MILEPOST

– Genetic algorithms

● Current optimizations
targeted for performances

● Few (if any) optimizations
in current compilers
designed to reduce
energy consumption

For the Compiler Writer

38

μWhat does this mean?

● Try the optimization
levels – O3 is a good
bet

● Use hardware
peripherals

● SIMD

● Power Modes

– Sleep
● Memory

– Closer to the processor
the better

– Exploit RAM

For the embedded developer

39

μMILEPOST GCC

MILEPOST GCC

Continuous Collective
Compilation Framework (CCC)

MILEPOST GCC

IC Plugins

Recording pass
sequences

Extracting static
Program features

Drivers for
iterative

compilation
and model

training

Global
Optimization
Database

Program1

Programn

...

Extracting static
program features

Selecting “good”
passes

New program
Predicting “good”
passes to improve

exec time, code size
and compile time

T
ra
in
i n
g

D
e
p
lo
y m
e
n
t

From Fursin et al, 2008

40

μConclusion

● Time ≈ Energy
– True for simple pipelines

– Mostly true for complex pipelines

– Good approximation

● Optimization unpredictability
– Difficult to model the interactions between optimizations

● Commonality across platforms
– Instruction set plays a role

– Common options for the ARM platforms, but not
Epiphany

41

μQuestions and Demonstration

james.pallister@bristol.ac.uk

simon@cs.bris.ac.uk

jeremy.bennett@embecosm.com

All data at: www.jpallister.com/wiki

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 28
	Slide 29
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

