

Energy (in Embedded Systems)

James Pallister

Research Engineer, Embecosm PhD Student, University of Bristol

Quick electronics recap

Resistors

$$V = I \times R$$

Quick electronics recap

Capacitors

$$Q = C \times V$$

What is energy?

In this context – amount of charge

Amount of charge taken to do something

Amount of charge available in my battery

Units

- Energy or power?
- Energy
 - How much charge my battery contains
 - Joules (J)
- Power
 - How fast am I using that charge
 - Watts (W) = Joules per second (J/s)

Topics

Where energy consumption comes from?

How do we measure energy consumption?

How do we minimise energy consumption?

'Levels' of Energy Consumption

The Low Level

- Transistor's energy consumption
 - Resistive

- Capacitative

Transistors

Transistors - Capacitance

A certain amount of charge (I.e energy) is needed to charge up the capacitors

Transistors - Resistance

Resistors affect the flow of charge (i.e. power)

Transistors – Short Circuit

The Next Level - Gates

Bit flipping

Α	Υ
0	1
1	0

A Circuit

Consequences

Faster clock = Faster flipping

Faster flipping = More flips per second

More flips per second = Higher power

Processors

Each instruction takes a different amount of energy

Systems

Average power for each block, while active or Assign an energy to each high level operation

Measuring Energy

We don't know enough about the electronics we use to model it with theory

So we measure it

Measuring Power

Repeat frequently, timestamp each sample Measure voltage drop across the resistor

Measure voltage at one side of the resistor

I = Vshunt / Rshunt to find the current

 $P = I \times V$ to calculate the power

The Power Monitor

How much data?

Currently 500,000 Samples/second 6,000,000 S/s possible
But 'High' speed USB is too slow

Measuring Energy

Shunt Resistor

Picking the right value is important!

Difference between the processor under test working or failing

- Too small a shunt resistor = Low measurement range
- Too large a shunt resistor = High voltage drop, processor doesn't get the required voltage

Tricking the regulator

Switch-mode regulators have feedback

Regulator sees the voltage drop over the resistor, and compensates

- The processor always gets the voltage it requires

Tricked the regulator

Other ways of measuring energy

- Current sensors
 - Non-invasive
 - Requires alternating current

- Heat cameras
 - Sometimes used on processors to find the hottest area of silicon
 - Hotter = more energy being used

Reducing Energy

Clock frequencies and voltages

Hot and fast or cool and slow?

Use less memory

Use dedicated hardware blocks

No bit-banging

Use the built in UART / SPI / I2C

Go to sleep (and use interrupts)

Higher clock frequencies

Faster bit flipping (capacitance)

More energy in the same amount of time

Shorter execution time (resistance)

Less time powered up = less energy

However... the processor gets hot

Hot Hot Hot

More leakage current.

More power dissipated.

More heat.

More leakage current.

More power dissipated.

More heat.

Memory

Memory is expensive

Modern processor

But even on small processors.

Cortex-M0 Load: 12mW Add: 8mW

Conclusion

It starts with the transistors.

But that's too low level to think about.

Measure the energy.

Run fast and try not to access memory

Workshop tomorrow – come and try some of these!

Thanks!

Any questions?