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μMotivation

● Compiler optimizations are claimed to have a large impact on 
software:
– Performance

– Energy

● No extensive study prior to this considering:
– Different benchmarks

– Many individual optimizations

– Different platforms

● This work looks at the effect of many different optimizations 
across 10 benchmarks and 5 platforms.

● 238 Optimization passes covered by 150 flags
– Huge amount of combinations
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μThis Talk

● This talk will cover:
– Importance of benchmarks

– How to explore 2^150 combinations of options

– Correlation between time and energy

– How to predict the effect of the optimizations

– The best optimizations
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μImportance of Benchmarks

● One benchmark can't 
trigger all 
optimizations

● Perform differently on 
different platforms

● Need a range of 
benchmarks

● Broad categories to 
be considered for a 
benchmark:
– Integer

– Floating point

– Branching

– Memory
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μExisting Benchmark Suites 
Considered

● MiBench
● WCET
● DSPstone
● ParMiBench
● OpenBench
● LINPACK
● Livermore Fortran 

Kernels
● Dhry/Whet-stone

● Require embedded Linux
● Targeted at higher-end 

systems
● Multithreaded 

benchmarks typically for 
HPC

● Don't necessarily test all 
corners of the platform
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μOur Benchmark List
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μChoosing the Platforms

● Range of different features in the platforms 
chosen
– Pipeline Depth

– Multi- vs Single- core 

– FPU available?

– Caching

– On-chip vs off-chip memory
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μPlatforms Chosen

ARM Cortex-M0 ARM Cortex-M3 ARM Cortex-A8 XMOS L1 Adapteva
Epiphany

Small memory Small memory Large memory Small memory On-chip and 
off-chip memory

Simple Pipeline Simple Pipeline, 
with forwarding 
logic, etc.

Complex 
superscalar 
pipeline

Simple pipeline Simple superscalar 
pipeline

SIMD/FPU FPU

Multiple threads 16 cores
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μExperimental Methodology

● Compiler optimizations have many non-linear 
interactions

● 238 optimization passes combined into 150 different 
options (GCC)

● 82 compiler options enabled by O3

● How to test all of these, while accounting for the 
interactions between optimizations?

●

Fractional Factorial Designs
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μFull Factorial Design

Example:
– 3 options to 

investigate

– Each option can be 
on or off (2 level)

– 2^3 tests to be run
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μEstimating an Option's Effect

● The effect of a single 
option can be 
calculated.
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μFractional Factorial Design

● Use a subset of the full 
factorial design

● Shown here is a 'half 
fraction'

● 2^(3-1) tests to be run
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μLoss of Information

● Less runs = less 
information

● The fewer runs 
performed, the fewer 
interactions can be 
resolved

● The 'resolution' of the 
fractional factorial 
design

O1 flags (37 factors)

Resolution Runs Needed

3 256

4 1024

5 2048

6 4096

Full 137438953472

10 hours 77000 years
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μHardware Measurements

● Current, voltage and 
power monitor

● 10 kSamples/s
● Low noise
● XMOS board to control 

and timestamp 
measurements

● Integrate to get energy 
consumption
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μResults

● Energy consumption ≈ Execution time
– Generalization, not true in every case

● Optimization unpredictability

● No optimization is universally good across 
benchmarks and platforms
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μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8
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μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8
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μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8
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μOverview
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μTime ≈ Energy

O1 Flags, FDCT, Cortex-M0
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μLess Correlation

O1 Flags, Rijndael, Cortex-A8
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μWhen Time ≠ Energy

O3 Flags, 2DFIR, Cortex-A8

● Complex pipeline
● -ftree-vectorize

– NEON SIMD unit

– Much lower power
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μConclusion: Mostly, Time ≈ Energy

● Highly correlated
● Especially so for 

'simple' pipelines
● Little scope for stalling 

or superscalar 
execution

● Complex pipelines:
– Still a correlation
– But more variability

– SIMD, superscalar 
execution

● To get the most optimal 
energy consumption we 
need better than 
“go fast”
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μOptimization Unpredictability

● Pairs of 
optimizations on 
top of O0

● Possibly higher 
order 
interactions 
occurring?

O1 Flags, Cubic, Cortex-M0
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μModelled

● Model constructed 
from 1 and 2 -way 
interactions

● Doesn't predict 
very well
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μCase Study: Interactions
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μThe Best Three Optimizations for 
Energy
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μConclusion: Which optimization to 
choose?

● Unpredictable 
interactions

● Many non-linear 
effects

● Not enough data 
recorded in the 
fractional factorial 
design to model

● Evidence of higher 
order interactions 
between 
optimizations?

For the general case, this question can't be answered
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μConclusion: Optimizations are 
common across architectures...

… Sometimes

● Common options 
across all the ARM 
platforms for a 
particular benchmark

 

● A few consistently 
good options for 
Epiphany
– Simpler instruction set

– Newer compiler

– Many more registers 
than ARM
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μWhat does this mean?

● Current optimization levels (O1, 
O2, etc.) are a good balance 
between compile time and 
performance/energy.

● Never completely optimal
● Machine learning

– MILEPOST

– Genetic algorithms

● Current optimizations 
targeted for performances

● Few (if any) optimizations 
in current compilers 
designed to reduce 
energy consumption

For the Compiler Writer
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μMILEPOST GCC

MILEPOST GCC

Continuous Collective
Compilation Framework (CCC)

MILEPOST GCC

IC Plugins

Recording pass
sequences

Extracting static
Program features

Drivers for
iterative

compilation
and model

training

Global
Optimization
Database

Program1

Programn

...

Extracting static
program features

Selecting “good”
passes

New program
Predicting “good”
passes to improve

exec time, code size
and compile time

T
ra
in
i n
g

D
e
p
lo
y m
e
n
t

From Fursin et al, 2008 
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μConclusion

● Time ≈ Energy
– True for simple pipelines
– Mostly true for complex pipelines

– Good approximation

● Optimization unpredictability
– Difficult to model the interactions between optimizations

● Commonality across platforms
– Instruction set plays a role

– Common options for the ARM platforms, but not Epiphany
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μQuestions?

james.pallister@bristol.ac.uk

simon@cs.bris.ac.uk

jeremy.bennett@embecosm.com

All data at: www.jpallister.com/wiki
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Howto: Funding Research at the University of 
Bristol

Jeremy Bennett, Embecosm
 Slides for NMI, 8th November 2012
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μParallella
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μProject Organization and 
Funding

● A fully open research project
– all the programs & results available as open source for download

– all papers will be published in open access journals (£2k each)

● Funded directly by Embecosm (approx £12k)
– paid for staff (at commercial rates as employees)

– paid for open access publication and some equipment

● Supported by Bristol University
– provided laboratory space and most equipment

– provided academic supervision (Dr Simon Hollis)

● Supported by industry
– Epiphany board (value $US 10k) loaned by Adapteva Inc.

● Supported by government
– 27.5% R&D Tax Credit

mailto:james.pallister@bristol.ac.uk
mailto:simon@cs.bris.ac.uk
mailto:jeremy.bennett@embecosm.com
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μWhy Fund This Way

● Simple to set up and run
– agreement by email
– fortnightly progress meetings

● Fast
– concept proposed in April 2012, started project < 3 months later

● Flexible
– no problem using Embecosm staff at commercial rates

● Cost effective (at least for a small project)
– no collaboration contract, no reporting bureaucracy
– 27.5% R&D Tax Credit (more for big companies, even Starbucks)
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μFuture Funding

● Technology Strategy Board (TSB)
– government innovation agency

– energy efficient computing (EEC) funding call
● £1.25M, up to approx £150k costs per project
● business led, consortia of 2 or more

– 100% funding of Universities, up to 75% funding of businesses
● plus R&D tax credit on top

● Joint proposal from Embecosm and Bristol University
– develop MILEPOST concept for energy

● but less integrated to individual compilers, use GCC and LLVM

– write compiler passes specifically for energy saving
● existing passes focus on code speed and size

– measure on a range of hardware
● does it work?
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