
1

μImpact of different compiler options
on energy consumption

James Pallister
University of Bristol / Embecosm

Simon Hollis
University of Bristol

Jeremy Bennett
Embecosm

2

μMotivation

● Compiler optimizations are claimed to have a large impact on
software:
– Performance

– Energy

● No extensive study prior to this considering:
– Different benchmarks

– Many individual optimizations

– Different platforms

● This work looks at the effect of many different optimizations
across 10 benchmarks and 5 platforms.

● 238 Optimization passes covered by 150 flags
– Huge amount of combinations

3

μThis Talk

● This talk will cover:
– Importance of benchmarks

– How to explore 2^150 combinations of options

– Correlation between time and energy

– How to predict the effect of the optimizations

– The best optimizations

4

μImportance of Benchmarks

● One benchmark can't
trigger all
optimizations

● Perform differently on
different platforms

● Need a range of
benchmarks

● Broad categories to
be considered for a
benchmark:
– Integer

– Floating point

– Branching

– Memory

5

μExisting Benchmark Suites
Considered

● MiBench
● WCET
● DSPstone
● ParMiBench
● OpenBench
● LINPACK
● Livermore Fortran

Kernels
● Dhry/Whet-stone

● Require embedded Linux
● Targeted at higher-end

systems
● Multithreaded

benchmarks typically for
HPC

● Don't necessarily test all
corners of the platform

6

μOur Benchmark List

8

μChoosing the Platforms

● Range of different features in the platforms
chosen
– Pipeline Depth

– Multi- vs Single- core

– FPU available?

– Caching

– On-chip vs off-chip memory

9

μPlatforms Chosen

ARM Cortex-M0 ARM Cortex-M3 ARM Cortex-A8 XMOS L1 Adapteva
Epiphany

Small memory Small memory Large memory Small memory On-chip and
off-chip memory

Simple Pipeline Simple Pipeline,
with forwarding
logic, etc.

Complex
superscalar
pipeline

Simple pipeline Simple superscalar
pipeline

SIMD/FPU FPU

Multiple threads 16 cores

10

μExperimental Methodology

● Compiler optimizations have many non-linear
interactions

● 238 optimization passes combined into 150 different
options (GCC)

● 82 compiler options enabled by O3

● How to test all of these, while accounting for the
interactions between optimizations?

●

Fractional Factorial Designs

11

μFull Factorial Design

Example:
– 3 options to

investigate

– Each option can be
on or off (2 level)

– 2^3 tests to be run

12

μEstimating an Option's Effect

● The effect of a single
option can be
calculated.

13

μFractional Factorial Design

● Use a subset of the full
factorial design

● Shown here is a 'half
fraction'

● 2^(3-1) tests to be run

14

μLoss of Information

● Less runs = less
information

● The fewer runs
performed, the fewer
interactions can be
resolved

● The 'resolution' of the
fractional factorial
design

O1 flags (37 factors)

Resolution Runs Needed

3 256

4 1024

5 2048

6 4096

Full 137438953472

10 hours 77000 years

15

μHardware Measurements

● Current, voltage and
power monitor

● 10 kSamples/s
● Low noise
● XMOS board to control

and timestamp
measurements

● Integrate to get energy
consumption

16

μResults

● Energy consumption ≈ Execution time
– Generalization, not true in every case

● Optimization unpredictability

● No optimization is universally good across
benchmarks and platforms

17

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

18

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

19

μOverview

FDCT, Cortex-M0 FDCT, Cortex-A8

20

μOverview

22

μTime ≈ Energy

O1 Flags, FDCT, Cortex-M0

23

μLess Correlation

O1 Flags, Rijndael, Cortex-A8

25

μWhen Time ≠ Energy

O3 Flags, 2DFIR, Cortex-A8

● Complex pipeline
● -ftree-vectorize

– NEON SIMD unit

– Much lower power

26

μConclusion: Mostly, Time ≈ Energy

● Highly correlated
● Especially so for

'simple' pipelines
● Little scope for stalling

or superscalar
execution

● Complex pipelines:
– Still a correlation
– But more variability

– SIMD, superscalar
execution

● To get the most optimal
energy consumption we
need better than
“go fast”

27

μOptimization Unpredictability

● Pairs of
optimizations on
top of O0

● Possibly higher
order
interactions
occurring?

O1 Flags, Cubic, Cortex-M0

28

μModelled

● Model constructed
from 1 and 2 -way
interactions

● Doesn't predict
very well

29

μCase Study: Interactions

30

μThe Best Three Optimizations for
Energy

31

μConclusion: Which optimization to
choose?

● Unpredictable
interactions

● Many non-linear
effects

● Not enough data
recorded in the
fractional factorial
design to model

● Evidence of higher
order interactions
between
optimizations?

For the general case, this question can't be answered

32

μConclusion: Optimizations are
common across architectures...

… Sometimes

● Common options
across all the ARM
platforms for a
particular benchmark

● A few consistently
good options for
Epiphany
– Simpler instruction set

– Newer compiler

– Many more registers
than ARM

33

μWhat does this mean?

● Current optimization levels (O1,
O2, etc.) are a good balance
between compile time and
performance/energy.

● Never completely optimal
● Machine learning

– MILEPOST

– Genetic algorithms

● Current optimizations
targeted for performances

● Few (if any) optimizations
in current compilers
designed to reduce
energy consumption

For the Compiler Writer

34

μMILEPOST GCC

MILEPOST GCC

Continuous Collective
Compilation Framework (CCC)

MILEPOST GCC

IC Plugins

Recording pass
sequences

Extracting static
Program features

Drivers for
iterative

compilation
and model

training

Global
Optimization
Database

Program1

Programn

...

Extracting static
program features

Selecting “good”
passes

New program
Predicting “good”
passes to improve

exec time, code size
and compile time

T
ra
in
i n
g

D
e
p
lo
y m
e
n
t

From Fursin et al, 2008

35

μConclusion

● Time ≈ Energy
– True for simple pipelines
– Mostly true for complex pipelines

– Good approximation

● Optimization unpredictability
– Difficult to model the interactions between optimizations

● Commonality across platforms
– Instruction set plays a role

– Common options for the ARM platforms, but not Epiphany

36

μQuestions?

james.pallister@bristol.ac.uk

simon@cs.bris.ac.uk

jeremy.bennett@embecosm.com

All data at: www.jpallister.com/wiki

37

Howto: Funding Research at the University of
Bristol

Jeremy Bennett, Embecosm
 Slides for NMI, 8th November 2012

38

μParallella

39

μProject Organization and
Funding

● A fully open research project
– all the programs & results available as open source for download

– all papers will be published in open access journals (£2k each)

● Funded directly by Embecosm (approx £12k)
– paid for staff (at commercial rates as employees)

– paid for open access publication and some equipment

● Supported by Bristol University
– provided laboratory space and most equipment

– provided academic supervision (Dr Simon Hollis)

● Supported by industry
– Epiphany board (value $US 10k) loaned by Adapteva Inc.

● Supported by government
– 27.5% R&D Tax Credit

mailto:james.pallister@bristol.ac.uk
mailto:simon@cs.bris.ac.uk
mailto:jeremy.bennett@embecosm.com

40

μWhy Fund This Way

● Simple to set up and run
– agreement by email
– fortnightly progress meetings

● Fast
– concept proposed in April 2012, started project < 3 months later

● Flexible
– no problem using Embecosm staff at commercial rates

● Cost effective (at least for a small project)
– no collaboration contract, no reporting bureaucracy
– 27.5% R&D Tax Credit (more for big companies, even Starbucks)

41

μFuture Funding

● Technology Strategy Board (TSB)
– government innovation agency

– energy efficient computing (EEC) funding call
● £1.25M, up to approx £150k costs per project
● business led, consortia of 2 or more

– 100% funding of Universities, up to 75% funding of businesses
● plus R&D tax credit on top

● Joint proposal from Embecosm and Bristol University
– develop MILEPOST concept for energy

● but less integrated to individual compilers, use GCC and LLVM

– write compiler passes specifically for energy saving
● existing passes focus on code speed and size

– measure on a range of hardware
● does it work?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Productive Development Throughout the SoC Lifecycle Comprehensive Tools from Architectural Model to Final Silicon
	Slide 38
	Slide 39
	Slide 40
	Slide 41

