

Parallel(la) Programming

Concurrency, Deadlock and Interconnect

James Pallister
Research Engineer, Embecosm

PhD Student, University of Bristol

About me

● PhD studying software-based energy efficiency.
– Currently looking at compiler technology

● Last summer:

Outline

Parallelism

Deadlock & race conditions

Epiphany's interconnect

Why Parallel?

The world is parallel.

But when programming, we've been taught to think
sequentially.

What is Parallelism?

● Multiple things happening at the same time to
progress towards a common goal.

Amdahl's Law
N

um
be

r
of

 c
or

es

Amdahl's Law

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Amdahl's Speed-up

0.8

0.9

0.95

0.99

1

Number of processors

S
p

e
e

d
-u

p

Real life Amdahl's Law

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Real life Amdahl's Law

0.8

0.9

0.95

0.96

Processors

S
p

e
e

d
-u

p

Communication Patterns

Fensch, C., Barrow-Williams, N., Mullins, R. D., & Moore, S. W. (2012). Designing
a Physical Locality Aware Coherence Protocol for Chip-Multiprocessors. IEEE

Transactions on Computers.

Flynn's Taxonomy

The 7 dwarves of parallel computation

Structured Grid

Unstructured Grid

Monte Carlo

N-Body

Spectral

Sparse Linear
Algebra

Dense Linear
Algebra

Parallelism - Paradigms

● Pipelines
● Task farms

– Server - client

● Geometric
– Matrix multiply

– Structured grid

Pipelines

Pipelining

Task Farms

● The 'farmer' distributes work
● The workers do the work, and when finished

ask for the next item.
● The farmer does a lot of communication – can

become communication bound
Worker

Farmer

Geometric Parallelism

● Often based on the layout of the task
● Matrix multiply

– Grid-based

● Physical simulation
– Often grid-based

An Example

More Examples

Deadlock and Race Conditions

http://csunplugged.org/routing-and-deadlock

The Dining Philosophers

Aristotle

Plato

Paul of
Tarsus

Descartes

Epicurus

Conditions for deadlock

● Mutual exclusion

● Resource holding

● No pre-emption

● Circular waiting

The Dining Philosophers

Aristotle

Plato

Paul of
Tarsus

Descartes

Epicurus

Race Conditions

Race Conditions

Thread 1

printf(“hello ”);
printf(“world ”);

Thread 2

printf(“good ”);
printf(“bye ”);

good bye hello world

good hello bye world

good hello world bye

hello world good bye

hello good bye world

hello good world bye

Interconnect

The eMesh

The eMesh

● 3 meshes
– Read, write, off-chip

– Fast write mesh

● Read/write to any core
● Everything handled transparently

– But it is useful to know some of the details for
performance reasons

Routing

Mesh Determinism

● Relaxed consistency
● Be careful when writing to other cores!
● Order of writing to 2 different cores is not

deterministic – race conditions and deadlock
● Writing to a remote core, then attempting to

read back the value is not deterministic

print “hello”

Safe Example

send to core 1 receive from core 0 receive from core 1

send to core 2

send to core 1 receive from core 0 receive from core 1

send to core 2
print “hello” print “world”print “world”

hello world

print “world”

Unsafe example

send to core 1 receive from core 0 receive from core 1
print “hello”

send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2 print “world”print “hello”

hello world

Lucky

print “world”

Unsafe example

send to core 1 receive from core 0 receive from core 1
print “hello”

send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2 print “world”print “hello”

helloworld

Unlucky

receive from core 1
send to core 0

Make it safe

● How do we make it safe?
– Synchronisation

print “world”
send to core 1 receive from core 0 receive from core 1

print “hello”
send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2

print “world”print “hello”

hello world

receive from core 1
send to core 0

Make it fast

● Write mesh is non-blocking
● Try to structure programs and algorithms to

only write to non-local memory
● Read and write from local memory is fast

A simple example - slow

Running on core 0

int a[10], b[10]; // On core 0
int c; // On core 1

for(i = 0, c = 0; i < 10; ++i)
 c += a[i] * b[i];

Note – without synchronisation this program is also non-deterministic

A simple example - fast

Running on core 0

int a[10], b[10]; // On core 0
int c_temp; // On core 0
int c; // On core 1

for(i = 0, c_temp = 0; i < 10; ++i)
 c_temp += a[i] * b[i];

c = c_temp;

Fortunately this program is deterministic

A tricky example

Running on core 0

int a[10], b[10]; // On core 0
int c[10]; // On core 1

for(i = 0; i < n; ++i)
 c[i] += a[i] * b[i];

Another Solution?

Core 0

int a[10], b[10];
int *temp;

temp = &partial;

for(i = 0; i < 10; ++i)
{
 temp[i] = a[i] * b[i];
 sync();
}

Core 1

int c[10];
int partial[10];

for(i = 0; i < 10; ++i)
{
 sync();
 c[i] += partial[i];
}

Is it faster?

Conclusion/Tips

● Many different paradigms for parallelism
● Careful of resource sharing
● Race conditions

– Unique challenges with accessing remote cores

● Writing is faster
– But it's challenging to pick the best way of doing this

More Info

Epiphany architecture reference manual

http://www.adapteva.com

http://www.parallella.org

http://www.embecosm.com

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

