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About me

● PhD studying software-based energy efficiency.
– Currently looking at compiler technology

● Last summer:



  

Outline

Parallelism

Deadlock & race conditions

Epiphany's interconnect



  

Why Parallel?

The world is parallel.

But when programming, we've been taught to think 
sequentially.



  

What is Parallelism?

● Multiple things happening at the same time to 
progress towards a common goal.
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Amdahl's Law
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Real life Amdahl's Law
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Communication Patterns

Fensch, C., Barrow-Williams, N., Mullins, R. D., & Moore, S. W. (2012).  Designing 
a Physical Locality Aware Coherence Protocol for Chip-Multiprocessors. IEEE 

Transactions on Computers.



  

Flynn's Taxonomy



  

The 7 dwarves of parallel computation

Structured Grid

Unstructured Grid

Monte Carlo

N-Body

Spectral

Sparse Linear 
Algebra

Dense Linear
Algebra



  

Parallelism - Paradigms

● Pipelines
● Task farms

– Server - client

● Geometric
– Matrix multiply

– Structured grid



  

Pipelines



  

Pipelining



  

Task Farms

● The 'farmer' distributes work
● The workers do the work, and when finished 

ask for the next item.
● The farmer does a lot of communication – can 

become communication bound
Worker

Farmer



  

Geometric Parallelism

● Often based on the layout of the task
● Matrix multiply

– Grid-based

● Physical simulation
– Often grid-based



  

An Example



  

More Examples



  

Deadlock and Race Conditions

http://csunplugged.org/routing-and-deadlock



  

The Dining Philosophers

Aristotle

Plato

Paul of
Tarsus

Descartes

Epicurus



  

Conditions for deadlock

● Mutual exclusion

● Resource holding

● No pre-emption

● Circular waiting



  

The Dining Philosophers

Aristotle

Plato

Paul of
Tarsus

Descartes

Epicurus



  

Race Conditions



  

Race Conditions

Thread 1

printf(“hello ”);
printf(“world ”);

Thread 2

printf(“good ”);
printf(“bye ”);

good bye hello world

good hello bye world

good hello world bye

hello world good bye

hello good bye world

hello good world bye



  

Interconnect

The eMesh



  

The eMesh

● 3 meshes
– Read, write, off-chip

– Fast write mesh

● Read/write to any core
● Everything handled transparently

– But it is useful to know some of the details for 
performance reasons



  

Routing



  

Mesh Determinism

● Relaxed consistency
● Be careful when writing to other cores!
● Order of writing to 2 different cores is not 

deterministic – race conditions and deadlock 
● Writing to a remote core, then attempting to 

read back the value is not deterministic



  

print “hello”

Safe Example

send to core 1 receive from core 0 receive from core 1

send to core 2

send to core 1 receive from core 0 receive from core 1

send to core 2
print “hello” print “world”print “world”

hello world



  

print “world”

Unsafe example

send to core 1 receive from core 0 receive from core 1
print “hello”

send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2 print “world”print “hello”

hello world

Lucky



  

print “world”

Unsafe example

send to core 1 receive from core 0 receive from core 1
print “hello”

send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2 print “world”print “hello”

helloworld

Unlucky



  

receive from core 1
send to core 0

Make it safe

● How do we make it safe?
– Synchronisation

print “world”
send to core 1 receive from core 0 receive from core 1

print “hello”
send to core 1 receive from core 0 receive from core 1

send to core 2send to core 2

print “world”print “hello”

hello world

receive from core 1
send to core 0



  

Make it fast

● Write mesh is non-blocking
● Try to structure programs and algorithms to 

only write to non-local memory
● Read and write from local memory is fast



  

A simple example - slow

Running on core 0

int a[10], b[10];     // On core 0
int c;                // On core 1

for(i = 0, c = 0; i < 10; ++i)
    c += a[i] * b[i];

Note – without synchronisation this program is also non-deterministic



  

A simple example - fast

Running on core 0

int a[10], b[10];     // On core 0
int c_temp;           // On core 0
int c;                // On core 1

for(i = 0, c_temp = 0; i < 10; ++i)
    c_temp += a[i] * b[i];

c = c_temp;

Fortunately this program is deterministic



  

A tricky example

Running on core 0

int a[10], b[10];   // On core 0
int c[10];          // On core 1

for(i = 0; i < n; ++i)
    c[i] += a[i] * b[i];    



  

Another Solution?

Core 0

int a[10], b[10];
int *temp;

temp = &partial;

for(i = 0; i < 10; ++i)
{
    temp[i] = a[i] * b[i];
    sync();
}

Core 1

int c[10];
int partial[10];
 

for(i = 0; i < 10; ++i)
{
    sync();
    c[i] += partial[i];
}

Is it faster?



  

Conclusion/Tips

● Many different paradigms for parallelism
● Careful of resource sharing
● Race conditions

– Unique challenges with accessing remote cores

● Writing is faster
– But it's challenging to pick the best way of doing this



  

More Info

Epiphany architecture reference manual

http://www.adapteva.com 

http://www.parallella.org 

http://www.embecosm.com

Questions?
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